
 1

16.216: ECE Application Programming
Spring 2013

Programming Assignment #8: Simple Raster-Scan Graphics
Due Wednesday, 4/10/12, 11:59:59 PM

1. Introduction
This assignment will give you practice working with two-dimensional arrays by
implementing a simple raster-scan graphics program. In raster-scan graphics, drawings
are constructed one pixel at a time, sweeping from left-to-right to print a line and printing
the lines from top to bottom. You will use a two-dimensional array to store a grid and a
series of boxes added to that grid using string-based commands.
This assignment is adapted from an assignment written by Professor George Cheney
for an earlier version of this course.

2. Deliverables
Submit your source file directly to Dr. Geiger (Michael_Geiger@uml.edu) as an e-mail
attachment. Ensure your source file name is prog8_raster.c. You should submit only
the .c file. Failure to meet this specification will reduce your grade, as described in the
program grading guidelines.
Note: a “starter” version of the .c file, which essentially contains an outline of what your
main program should look like as well as a list of useful functions, is available on the
website. You may use this file as a starting point for your own code.

3. Specifications
Basic setup: All program operations manipulate the state of a 21 x 51 “pixel” grid, the
initial state of which is shown in Figure 1:

Figure 1: Empty 21 x 51 grid

mailto:Michael_Geiger@uml.edu

16.216: ECE Application Programming M. Geiger
UMass Lowell Program 8

 2

Note that:

• The x-axis runs from 0 to 50; the y-axis runs from 0 to 20.
• The state of the grid is stored in a 2-dimensional character array, with each

character representing one of the following:
o An intersection of two grid lines ('+')
o A horizontal grid line ('-')
o A vertical grid line ('|')
o A space between grid lines (' ')

• The axis labels shown on the right and bottom of the grid are not stored in this
array; they are simply printed when the current grid state is printed.

• To change the display, users can add “boxes” to the grid by specifying the (x,y)
coordinates of the origin (lower left corner), the width, and the height.

o Each point in each box is displayed as a star ('*'), which overwrites all
appropriate positions in the grid. Figure 2 shows a grid with 4 boxes.

o Note that boxes can lie partially outside the grid—you must determine
what part of the box is inside the grid and store those coordinates. The
box in the top right corner of Figure 2 shows one example.

Figure 2: Updated grid with the following boxes—origin (10,5) with width 11 and height 8, origin (25,10)
with width and height 3, origin (36,6) with width 4 and height 1, and origin (49,19) with width and height 4.
Note that the fourth box goes outside the grid, but only the lower left part of it is shown.

Input: Your program should handle each of the following commands:
• add: Add a box to the grid--prompt the user to enter the x and y coordinates of

the origin, as well as the width and height.
• print: Print the current state of the grid and all added boxes.
• reset: Remove all boxes from the grid and reset it to its initial state.
• exit: End the program.

If the user enters any other command, print an error message.

16.216: ECE Application Programming M. Geiger
UMass Lowell Program 8

 3

Output: When the user enters the print command, print the current state of the grid and
all added boxes, as shown in the above examples and in the test cases below.

Error checking: Your program needs only to check for invalid commands; you do not
need to perform any additional error checking.
Again, note that a box that is partially outside the grid is not an error condition—you
simply need to account for the part of the box that is inside the grid. If a box is
completely outside the grid, you can ignore it without printing any errors.

Functions: In addition to the main() function, I suggest using the following additional
functions, which are called by main():

• void resetGrid(char grid[][NCols]): Reset the grid to its initial state by
removing all boxes and resetting all characters to gridlines or spaces.

• void addBox(char grid[][NCols], int x, int y, int width,
int height): Add a box to the grid with origin (x,y) and the specified width and
height. Note that the actual console input should be done outside this function,
and that this function should account for cases where part of the box is outside
the grid.

• void printGrid(char grid[][NCols]): Print the current state of the grid,
including all added boxes.

16.216: ECE Application Programming M. Geiger
UMass Lowell Program 8

 4

4. Test Cases
Your output should match these test cases exactly for the given input values. I will use
these test cases in grading of your lab, but will also generate additional cases that will
not be publicly available. Note that these test cases may not cover all possible program
outcomes. You should create your own tests to help debug your code and ensure
proper operation for all possible inputs.

Remember, to get your program to terminate with a message saying, “Press any key to
continue …”, use the Start Without Debugging command (press Ctrl + F5) to run your
code.

	1. Introduction
	2. Deliverables
	3. Specifications
	Error checking: Your program needs only to check for invalid commands; you do not need to perform any additional error checking.
	4. Test Cases

