
 1

16.216: ECE Application Programming
Summer 2012

Programming Assignment #7: Arrays and Functions
Due Friday, 8/10/12, 11:59:59 PM

1. Introduction
This assignment gives you experience working with arrays and functions. You
will write a program that can be used to determine the minimum, maximum, and
average values for voltage, current, and power across a group of resistors, using
functions to read in the appropriate data and calculate the necessary data.

2. Deliverables
Submit your source file directly to Dr. Geiger (Michael_Geiger@uml.edu) as an
e-mail attachment. Ensure your source file name is prog7_arrays.c. You should
submit only the .c file. Failure to meet this specification will reduce your grade, as
described in the program grading guidelines.

3. Specifications
Input: Your program should repeatedly prompt the user to enter resistance and
voltage values for each resistor, concluding when one of two conditions is met:

• The user enters Ctrl-Z (and then Enter) to indicate the end of the list
o See Section 4 for hints on detecting this condition

• The user enters a total of 20 resistors (the maximum allowed number).
For example (user input is underlined):
 Enter R and V for resistor 1: 270 5.5
 Enter R and V for resistor 2: 12000 -33.1
 Enter R and V for resistor 3: 4700 8.3
 Enter R and V for resistor 4: 2200 4.9
 Enter R and V for resistor 5: 6800 -1.5
 Enter R and V for resistor 6: 330 .45
 Enter R and V for resistor 7: 10000 5.5
 Enter R and V for resistor 8: ^Z

Your program must also validate input—all resistor values must be greater than
zero. Below is a partial run showing how a negative resistor value is handled:
 Enter R and V for resistor 1: -10 2.3
 ERROR: R must be greater than 0
 Enter R and V for resistor 1: 10 2.3
 Enter R and V for resistor 2:

mailto:Michael_Geiger@uml.edu

16.216: ECE Application Programming M. Geiger
UMass Lowell Program 7

 2

Output: After reading all input, your program should print a table showing the
minimum, maximum, and average values for three quantities: the voltage drops,
current flow, and power consumption across all resistors. Recall that:

• I = V / R
• P = V * I

Your output for the first input sequence of 7 resistors above would be:
 Voltage Current Power
 MIN -33.1 -0.0028 0.0003
 MAX 8.3 0.0204 0.1120
 AVG -1.4 0.0033 0.0333

Error checking: Your program should print an error and immediately exit under
any of the following conditions:

• Any of the inputs are incorrectly formatted and therefore cannot be read
correctly using scanf().

Functions: In addition to the main() function, you are required to provide two
other functions that are called by main():

int ReadRes(int n, double *r, double *v);

Function arguments
int n Number of next resistor to be entered
double *r Address of main program variable storing next resistor value
double *v Address of main program variable storing resistor voltage

Return values
1 Function has read valid data and stored those data in the

variables at addresses indicated by r and v
0 End of file (Ctrl-Z) was entered, so no valid data were stored in

variables at address indicated by r and v.
-1 Input data incorrectly formatted—could not be read by scanf()

This function is used to read in pairs of resistances and voltages. It will prompt
for each resistor by number, starting with resistor 1, and then accept the
resistance and voltage for a single resistor. Your main program must therefore
call this function repeatedly to read all resistor values.

If the entered resistance is not positive, ReadRes() will display an error and try
again (see the second example input on page 1). If the resistance is valid, the
function returns to main with r and v pointing to new values.

If the user enters Ctrl-Z, ReadRes() must detect the end of file and signal to the
main program that there are no more data, using the function return value, as
described above. Note that the function should not return if an invalid resistance
value is entered.

16.216: ECE Application Programming M. Geiger
UMass Lowell Program 7

 3

Functions (cont.):

void MinMaxAvg(double x[], int n, double *min, double *max,
double *avg);

Function arguments
double x[] Array of doubles to be analyzed
int n Number of elements in array
double *min Address of main program variable storing array minimum
double *max Address of main program variable storing array maximum
double *avg Address of main program variable storing array average

This function will be used to calculate the appropriate quantities for each input
array—minimum, maximum, and average. Because multiple values are required
to be "returned" to the main program, addresses of those variables are passed.

4. Formulating a solution
Detecting end of input: As noted, your program should stop reading input when
the user enters Ctrl-Z. That sequence indicates the end of the input stream.
When scanf() reaches the end of the input stream before reading all values, it
will return a special value, EOF ("end of file"). You can therefore test for this value
in your ReadRes() function; note that the example code below only covers one
possible return value for this function:
 int scanfRetVal;
 scanfRetVal = scanf(<appropriate scanf arguments>);
 if (scanfRetVal == EOF)
 return 0; // Indicates no valid data read

Pointers and scanf(): Until now, we have used scanf() to read data into
simple variables and have therefore needed the address operator (&) to pass the
variable addresses to scanf().

If you want to read a value into a variable, and you already have a pointer
holding the variable's address, you can simply use that pointer as an argument to
scanf(). For example, the following code uses a pointer p that points to an
integer x. That pointer is passed to scanf(), allowing an input value to be read
into x:
 int x;
 int *p = &x;
 scanf("%d", p); // If user enters 3, x == 3 at end of
 // this function call
 // This code is equivalent to:
 // scanf("%d", &x);

16.216: ECE Application Programming M. Geiger
UMass Lowell Program 7

 4

Partially filled arrays: In this program, I suggest using arrays to store all
voltage, current, and power values. Each of these arrays can then be passed to
the MinMaxAvg() function to calculate the appropriate values.

In most cases, these arrays will not be completely filled. Each array should be
declared with the maximum possible size, which I recommend declaring as a
symbolic constant. A separate variable should hold the number of values actually
stored in the array; that variable can be passed to MinMaxAvg() as the number
of array elements.
The following code provides a basic example of the approach I suggest for using
partially filled arrays:
 int n; // # elements in array
 double current[MAX_RESISTORS]; // Current values
 double maxC, minC, avgC; // Current min/max/avg
 <code to read input values and change array and n>

 // Calculate min, max, and average values for current
 MinMaxAvg(current, n, &minC, &maxC, &avgC);

16.216: ECE Application Programming M. Geiger
UMass Lowell Program 7

 5

5. Test Cases
Your output should match these test cases exactly for the given input values. I
will use these test cases in grading of your lab, but will also generate additional
cases that will not be publicly available. Note that these test cases may not cover
all possible program outcomes. You should create your own tests to help debug
your code and ensure proper operation for all possible inputs.

Remember, to get your program to terminate with a message saying, “Press any
key to continue …”, use the Start Without Debugging command (press Ctrl +
F5) to run your code.

	1. Introduction
	2. Deliverables
	3. Specifications
	Error checking: Your program should print an error and immediately exit under any of the following conditions:
	4. Formulating a solution
	5. Test Cases

