
 1

16.216: ECE Application Programming
Summer 2014

Programming Assignment #6: Using Arrays to Count Letters in Text
Due Friday, 6/13/14, 11:59:59 PM

1. Introduction
In this program, you will practice working with arrays. Your program will read lines of
text from the keyboard and use an array to track the number of times each letter occurs
in the input text. You will use the contents of this array to generate a histogram (bar
graph) indicating the relative frequencies of each letter entered.

This assignment has been adapted from an assignment written by Prof. George Cheney
for an earlier version of this course.

2. Deliverables
Submit your source file directly to Dr. Geiger (Michael_Geiger@uml.edu) as an e-mail
attachment. Ensure your source file name is prog6_histogram.c. You should submit
only the .c file. Failure to meet this specification will reduce your grade, as described in
the program grading guidelines.

3. Specifications
Program variables: At a minimum, you will need variables in main() to track:

• The number of times each letter in the alphabet has occurred in the input:
o These values should be stored in an array, in which the first entry represents

the number of 'A' or 'a' characters entered, and the last entry represents
the number of 'Z' or 'z' characters entered.
 For example, if your first input is: Hello World!, the array should hold:

{0,0,0,1,1,0,0,1,0,0,0,3,0,0,2,0,0,1,0,0,0,0,1,0,0,0}.
 The non-zero values indicate the number of 'D', 'E', 'H', 'L', 'O',

'R', and 'W' characters entered, respectively.
 Note that the character inputs are case-insensitive—uppercase and

lowercase letters are treated the same.
• The maximum number of times any letter has occurred. In the example above,

this value would be 3.
These variables are updated every time the user enters the 'R' command followed by a
line of input, and reset to 0 every time the user enters the 'C' command. They are used
to print the histogram whenever the ‘P’ command is used.

The variables should be updated inside the ReadText() function, and printed using
the DrawHist() function.

mailto:Michael_Geiger@uml.edu

16.216: ECE Application Programming M. Geiger
UMass Lowell Program 6

 2

Program structure: Your program should repeatedly prompt the user to enter a single
character command until the user enters the “quit” command. The program should
perform the following operations for the listed commands:

• 'C', 'c': Clear the letter counts to 0 in preparation for analyzing new text.
• 'R', 'r': Read one line of text from the keyboard. Update the letter counts

appropriately, using the ReadText() function.

• 'P', 'p': Plot the histogram of letter frequencies in all lines of text entered since
the last 'C' command, using the DrawHist() function.

• 'Q', 'q': Quit—exit the program.

Functions: Your program should contain the functions with the prototypes shown
below, as well as any other functions you choose to add:

• void ReadText(int histo[], int *max);

Read one line of text from the keyboard, updating the array histo[] with the
number of occurrences of each letter of the alphabet.

Also, use the pointer max to update the variable holding the number of occurrences
of the most frequent letter.

• void DrawHist(int histo[], int max);

Given the array holding the letter counts (histo[]) and the number of occurrences
of the most frequent letter (max), plot a histogram of the letter counts. Note that:

o max helps you determine the height of the histogram, and therefore the
number of rows to print.

o When printing each row:

 Print a vertical bar | in the appropriate column if the letter count is
large enough to be displayed in that row.

 Print a space otherwise.
 Remember to leave spaces between columns—your output should line

up exactly as shown in the test cases.
o Remember that you are printing from the top of the histogram to the bottom—

that fact will affect the design of this function.

See Section 5 for test cases that demonstrate the proper format for input and output.

16.216: ECE Application Programming M. Geiger
UMass Lowell Program 6

 3

4. Hints and tips
ASCII values: Recall that each character has a corresponding integer value, according
to the ASCII standard. You may find it useful to work directly with ASCII values in this
program, rather than testing if each input character matches a particular letter. 'A' has
the ASCII value 65; 'a' has the ASCII value 97.

Character functions: You may find the following built-in functions from the <ctype.h>
library useful. Remember that int and char data types are compatible:

• int isalpha(int ch): This function returns a non-zero value if ch is a letter
of the alphabet, and zero otherwise.

o For example, isalpha('Q') returns 1; isalpha('3') returns 0.

• int tolower(int ch): If ch is an uppercase letter, this function returns the
lowercase version. Otherwise, tolower() returns the original value of ch.

o For example, tolower('Q') returns 'q'; tolower('a') returns 'a'.

• int toupper(int ch): If ch is a lowercase letter, this function returns the
uppercase version. Otherwise, tolower() returns the original value of ch.

• For example, toupper('q') returns 'Q'; toupper('A') returns 'A'.

5. Test Cases
The following page contains test cases showing a sample run of this program. Your
output should match these test cases exactly for the given input values.
I will use these test cases in grading of your program, but will also generate additional
cases that will not be publicly available. Note that these test cases may not cover all
possible program outcomes. You should create your own tests to help debug your code
and ensure proper operation for all possible inputs.

16.216: ECE Application Programming M. Geiger
UMass Lowell Program 6

 4

5. Test Cases (continued)

	1. Introduction
	2. Deliverables
	3. Specifications
	See Section 5 for test cases that demonstrate the proper format for input and output.
	4. Hints and tips
	5. Test Cases
	5. Test Cases (continued)

