
 1

16.216: ECE Application Programming
Summer 2014

Programming Assignment #5: Integral Approximation with Functions
Due Tuesday, 6/10/14, 11:59:59 PM

1. Introduction
In this program, you will design functions that allow you to approximate the integral of a
function, f(x), using the trapezoidal rule. To find this integral—the area under the
curve—we can approximate the area as a series of trapezoids, as shown below:

In the figure, the range [a, b] has been divided into n different trapezoids, each of which
has the same base, ∆𝑥 = (𝑏 − 𝑎)/𝑛. Recall that a trapezoid with base b and sides h1
and h2 has area:

 0.5 × 𝑏 × (ℎ1 + ℎ2)
Therefore, the area of trapezoid number k (1 ≤ k ≤ n) from the figure above is:

 0.5 × ∆𝑥 × (𝑦𝑘−1 + 𝑦𝑘) = 0.5 × ∆𝑥 × (𝑓(𝑥𝑘−1) + 𝑓(𝑥𝑘))
To find the total area under the curve—and therefore the approximate integral—sum the
areas of all trapezoids:

𝐴𝑟𝑒𝑎 = 0.5 × ∆𝑥 × (𝑦0 + 𝑦1) + 0.5 × ∆𝑥 × (𝑦1 + 𝑦2) + ⋯+ 0.5 × ∆𝑥 × (𝑦𝑛−1 + 𝑦𝑛)
 = 0.5 × ∆𝑥 × (𝑦0 + 𝑦1 + 𝑦1 + 𝑦2 + ⋯+ 𝑦𝑛−1 + 𝑦𝑛)
 = 0.5 × ∆𝑥 × (𝑦0 + 2𝑦1 + 2𝑦2 + ⋯+ 2𝑦𝑛−1 + 𝑦𝑛)

 = 𝟎.𝟓 × ∆𝒙 × �𝒚𝟎 + 𝟐�𝒚𝒌

𝒏−𝟏

𝒌=𝟏

+ 𝒚𝒏� ≈ � 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

Your integral function will use the equation shown in bold above to approximate the
integral, given the endpoints of the interval [a, b] and the number of trapezoids, n.

16.216: ECE Application Programming M. Geiger
UMass Lowell Program 5

 2

2. Deliverables
Submit your source file directly to Dr. Geiger (Michael_Geiger@uml.edu) as an e-mail
attachment. Ensure your source file name is prog5_integral.c. You should submit only
the .c file. Failure to meet this specification will reduce your grade, as described in the
program grading guidelines.

3. Specifications
Program structure: Your program should follow the general outline below:
1. Prompt for and read the following values:

• The low and high points of the interval [a, b], over which f(x) is to be integrated.
• The number of trapezoids, n, to be used in that integration.

If an input error occurs, print an error message and repeat the prompt for that input.
Input errors are as follows:

• scanf() cannot read the input values (for example, if the user types "A 3" for
the interval endpoints).

o In this case, you must clear the rest of the line before retrying scanf().
o See Lectures 10-11: PE2 for a reminder of how to check that the input is

properly formatted and how to clear the rest of the line if it is not.
• The “low” interval endpoint is greater than or equal to the “high” endpoint.
• The number of trapezoids is less than 1.

2. Once the user has entered error-free input values, call the integrate() function
(described below), which will use the trapezoidal method to approximate the integral
of f(x) over the interval [a, b] using n trapezoids.

3. After printing the results, ask the user if he or she wants to repeat the program, and
then read a single character that serves as the response to that question. If the user
enters:

• 'Y' or 'y' Return to Step 1.
• 'N' or 'n' End the program.
• Any other character Print an error message and repeat the question.

See Section 4 for test cases that demonstrate the proper format for input and output.

mailto:Michael_Geiger@uml.edu

16.216: ECE Application Programming M. Geiger
UMass Lowell Program 5

 3

Functions: Your program should contain the functions with the prototypes shown
below, as well as any other functions you choose to add:

• double f(double x);

The function being integrated, which should calculate the value:

𝑓(𝑥) = sin(𝑥) +
𝑥2

10

Note that you should include the math library <math.h> in order to use the sin()
function; this function takes a single argument and returns the sine of that value.

• double integrate(double a, double b, int n);

This function should use the trapezoidal method to approximate the integral of f(x)
over the interval [a, b] using n trapezoids, as described above. The return value of
the function is the result of the approximation. Note that the function should not print
any values to the screen—the output should be handled in the main function.

4. Test Cases
Your output should match these test cases exactly for the given input values. I will use
these test cases in grading of your lab, but will also generate additional cases that will
not be publicly available. Note that these test cases do not cover all possible program
outcomes. You should create your own tests to help debug your code and ensure
proper operation for all possible inputs.

16.216: ECE Application Programming M. Geiger
UMass Lowell Program 5

 4

	2. Deliverables
	3. Specifications
	See Section 4 for test cases that demonstrate the proper format for input and output.
	4. Test Cases

