
 1

16.216: ECE Application Programming
Fall 2013

Programming Assignment #4: Iterative Algorithms
Due Monday, 10/7/13, 11:59:59 PM

1. Introduction
This program will use an iterative algorithm—an algorithm that runs until a given
condition is met—to approximate the nth root of a given value. You will also use
loops to ensure your application runs until the user explicitly ends the program.

Please note that this operation could be implemented using functions from the C
math library. However, you may not use functions from <math.h> in your
solution—any use of a function from <math.h> will result in a 40 point
deduction.

2. Deliverables
Submit your source file directly to Dr. Geiger (Michael_Geiger@uml.edu) as an
e-mail attachment. Ensure your source file name is prog4_root.c. You should
submit only the .c file. Failure to meet this specification will reduce your grade, as
described in the program grading guidelines.

3. Specifications
Input: Your program will repeatedly prompt the user to enter a pair of values
separated by a single space: A n. If user input is incorrectly formatted, repeat the
prompt. The program will then compute the nth root of A, √𝐴𝑛 . Note that:

• A must be a positive real number.

• n must be an integer greater than or equal to 2.

• If either of the above conditions is not met, print an error message and
then proceed to the question described below.

Once complete, ask the user if he or she would like to calculate another root. If
the user enters 'Y' or 'y', the program should return to its initial prompt. If the
user enters 'N' or 'n', the program should exit. Otherwise, print an error
message and repeat the question.

mailto:Michael_Geiger@uml.edu

16.216: ECE Application Programming M. Geiger
UMass Lowell Program 4

 2

Output: Assuming there are no errors, your program should evaluate the inputs
and print the values of A and n, as well as the root √𝐴𝑛 . Non-integer values
should be printed with two decimal places. Sample input/output pairs are shown
below, with the user input underlined:

• Enter real number and integer (A n): 125 3
Given A = 125.00 and n = 3, root = 5.00

• Enter real number and integer (A n): 0.1 10
Given A = 0.10 and n = 10, root = 0.79

• Enter real number and integer (A n): 16.216 2
Given A = 16.22 and n = 2, root = 4.03

• Enter real number and integer (A n): 65536 4
Given A = 65536.00 and n = 4, root = 16.00

See Section 5 for additional test cases.

Error checking: As noted above, your program should print an error under any
of the following conditions:

• The user enters improperly formatted input values.

• The value of A is negative.

• The value of n is less than 2.

• The user responds to the question about calculating another root with a
character other than 'Y', 'y', 'N', or 'n'.

16.216: ECE Application Programming M. Geiger
UMass Lowell Program 4

 3

4. Formulating a solution—hints, tips, etc.
Calculating the nth root: The general method you can use for finding a root is
as follows (reference: http://en.wikipedia.org/wiki/Nth_root_algorithm):

• Choose an initial guess, x0—1 works well as an initial value.
• Iteratively calculate each new guess using the formula:

Note that A and n are the user input values. I recommend using two
variables to store these values:

1. xk = result from the previous iteration (should start at 1)
2. xk+1 = result from current iteration

• Stop iterating when the desired precision is reached (when the difference
between xk and xk+1 is sufficiently small).
o I recommend checking that the absolute value of the difference

between the two values is < 0.000001.
o You must check the absolute value because xk+1 – xk may be negative.

However, you can’t use the built-in absolute value function—find your
own method!

Note that if A is 0, your result is 0.

Reading character input: In most cases, scanf() will skip whitespace
(spaces, tabs, newlines) when reading input. Remember that the exception to
that rule comes when using the %c format specifier, which usually reads the next
character in the input stream—space or otherwise. Given the following input:
 5 3
 X

Say you have the following code, assuming a and b are ints and c is a char:
 scanf("%d %d", &a, &b);
 scanf("%c", &c);

a and b will be 5 and 3, as expected; c, however, will hold the newline character,
since that is the first input character after the integer 3. To avoid this problem,
you can put a space in your format string, which will cause scanf() to skip
whitespace characters and read the first character that follows the whitespace.
Replace the second line above with:
 scanf(" %c", &c);

Note that newlines in your input may not be obvious—you may enter values, print
outputs based on those values, and then prompt for another input value.

16.216: ECE Application Programming M. Geiger
UMass Lowell Program 4

 4

5. Test Cases
Your output should match these test cases exactly for the given input values. I
will use these test cases in grading of your lab, but will also generate additional
cases that will not be publicly available. Note that these test cases may not cover
all possible program outcomes. You should create your own tests to help debug
your code and ensure proper operation for all possible inputs.

	1. Introduction
	2. Deliverables
	3. Specifications
	See Section 5 for additional test cases.
	Error checking: As noted above, your program should print an error under any of the following conditions:
	4. Formulating a solution—hints, tips, etc.
	5. Test Cases

