
 1

16.216: ECE Application Programming
Summer 2014

Programming Assignment #4: Reducing Fractions
Due Friday, 6/6/14, 11:59:59 PM

1. Introduction
This program will use an iterative algorithm—an algorithm that runs until a given
condition is met—to reduce a fraction to its lowest terms. You will also use loops
to ensure your application runs until the user explicitly ends the program.

2. Deliverables
Submit your source file directly to Dr. Geiger (Michael_Geiger@uml.edu) as an
e-mail attachment. Ensure your source file name is prog4_GCD.c. You should
submit only the .c file. Failure to meet this specification will reduce your grade, as
described in the program grading guidelines.

3. Specifications
Input: Your program will repeatedly prompt the user to enter a fraction in the
form <num>/<den>, then reduce the fraction to its lowest terms using the
greatest common divisor of <num> and <den>. Note that:

• Both the numerator <num> and denominator <den> are integers.

• The fraction should be entered with no spaces between the two numbers
and the '/' character that separates them.

• If the denominator is 0, print an error message.
Once complete, the program should ask the user if he or she would like to reduce
another fraction. If the user enters 'Y' or 'y', the program should return to its initial
prompt. If the user enters 'N' or 'n', the program should exit. In all other cases,
the program should print an error and repeat the question.

Output: Assuming there are no errors, your program should evaluate the inputs
and print the original and reduced fraction, as well as the GCD. Sample
input/output pairs are shown below, with the user input underlined:

• Enter fraction numerator/denominator: 16/80
16/80 reduces to 1/5 (GCD = 16)

• Enter fraction numerator/denominator: 12/99
12/99 reduces to 4/33 (GCD = 3)

• Enter fraction numerator/denominator: 100/40
100/40 reduces to 5/2 (GCD = 20)

• Enter fraction numerator/denominator: 13/15
13/15 reduces to 13/15 (GCD = 1)

mailto:Michael_Geiger@uml.edu

16.216: ECE Application Programming M. Geiger
UMass Lowell Program 4

 2

Error checking: Your program should print an error under any of the following
conditions:

• The denominator of the fraction is 0. In this case, ask the user if he or she
would like to read another fraction.

• The fraction is improperly formatted. In this case, prompt for and read a
new fraction after printing the error message.

• The user enters something other than 'Y', 'y', 'N', or 'n' when asked about
reducing another fraction.

4. Formulating a solution—hints, tips, etc.
Calculating the greatest common divisor (GCD): To reduce a fraction to its
lowest terms, you can divide both the numerator and denominator by their GCD.
To calculate the GCD, you can use Euclid’s algorithm—given two numbers, x
and y, follow the steps below, which are repeated until the GCD is calculated:

1. If y is 0, x is the GCD.
2. Otherwise, calculate r, the remainder of x / y.
3. Let x = y, and y = r.

• In other words, x holds the “old” value of y, and the new value of y is
the remainder from Step 2.

4. Return to Step 1.

Reading character input: In most cases, scanf() will skip whitespace
(spaces, tabs, newlines) when reading input. The exception to that rule comes
when using the %c format specifier, which usually reads the next character in the
input stream—space or otherwise. Given the following input:
 5 3
 X

Say you have the following code, assuming a and b are ints and c is a char:
 scanf("%d %d", &a, &b);
 scanf("%c", &c);

a and b will be 5 and 3, as expected; c, however, will hold the newline character,
since that is the first input character after the integer 3. To avoid this problem,
you can put a space in your format string, which will cause scanf() to skip
whitespace characters and read the first character that follows the whitespace.
Replace the second line above with:
 scanf(" %c", &c);

Note that newlines in your input may not be obvious—you may enter values, print
outputs based on those values, and then prompt for another input value.

16.216: ECE Application Programming M. Geiger
UMass Lowell Program 4

 3

5. Test Cases
Your output should match these test cases exactly for the given input values. I
will use these test cases in grading of your lab, but will also generate additional
cases that will not be publicly available. Note that these test cases do not cover
all possible program outcomes. You should create your own tests to help debug
your code and ensure proper operation for all possible inputs.

	1. Introduction
	2. Deliverables
	3. Specifications
	Error checking: Your program should print an error under any of the following conditions:
	4. Formulating a solution—hints, tips, etc.
	5. Test Cases

