
 1

16.216: ECE Application Programming
Fall 2012

Programming Assignment #3: Instruction Decoding
Due Friday, 9/28/12, 11:59:59 PM

1. Introduction
This assignment will give you practice with the C bitwise operators and
conditional statements. Your program will simulate a very simple processor that
is controlled using an 8-bit “instruction.” The program will decode this instruction
to determine what operation should be performed and what values should be
used in the computation.

2. Deliverables
Submit your source file directly to Dr. Geiger (Michael_Geiger@uml.edu) as an
e-mail attachment. Ensure your source file name is prog3_decode.c. You
should submit only the .c file. Failure to meet this specification will reduce your
grade, as described in the program grading guidelines.

3. Specifications
General description: When C programs are compiled, they are converted to
instructions—simple operations that processors execute. Most instructions
specify an operation to be performed and the data to be used in that operation.
Processors often store data in registers—temporary storage locations that are
referenced by name or number in the instruction, as shown in the example
below. This instruction adds the contents of registers 0 and 1 (the source
operands) and stores the result in register 2 (the destination operand):
 ADD R2, R0, R1
In practice, each instruction is encoded as a bit sequence; the processor
decodes those bits to determine the operation and operands used for each
instruction. Each possible operation is assigned a number, or opcode—for
example, 0 might represent addition. Registers are usually referred to by number.
This program simulates a simple processor with four operations (add, subtract,
multiply, divide) and four registers. The “instruction” that you will input uses a
total of 8 bits—2 bits for the operation, 2 bits for the destination operand, and 2
bits for each of the two source operands.
The example instruction above would be encoded as 0x21 = 0010 00012:

• The first two bits (00) indicate the operation (add)

• The next two bits indicate the destination register number (102 = 2 R2)

• The next four bits indicate the two source register numbers (00 and 01
R0 and R1)

mailto:Michael_Geiger@uml.edu

16.216: ECE Application Programming M. Geiger
UMass Lowell Program 3

 2

General description (cont.): Further instruction examples are shown below:
Encoded
inst.

Opcode

Destination Source 1 Source 2 Actual inst.

0x3A =
0011 10102

002 Add 112 R3 102 R2 102 R2 ADD R3, R2, R2
(R3 = R2 + R2)

0x5C =
0101 11002

012
Subtract

012 R1 112 R3 002 R0 SUB R1, R3, R0
(R1 = R3 – R0)

0x89 =
1000 10012

102
Multiply

002 R0 102 R2 012 R1 MUL R0, R2, R1
(R0 = R2 * R1)

0xFB =
1111 10112

112
Divide

112 R3 102 R2 112 R3 DIV R3, R2, R3
(R3 = R2 / R3)

The actual result of the operation depends on the values stored in each register
when the instruction executes. For example, if R2 = 7, then ADD R3, R2, R2
would assign the value 7 + 7 = 14 to R3.

Input: Your program should prompt the user to enter the following:

• Four integers that represent the values stored in R0, R1, R2, and R3.
• An 8-bit hexadecimal value representing the instruction

o Use the format specifier %x to read a hexadecimal value.
o Note that, although the instruction is only 8 bits, you should store it

in a variable of type unsigned int.

Your program might produce the following first two lines (inputs are underlined):
Enter values for 4 integer registers: 1 2 3 4
Enter single byte for instruction (in hex): 0xC6

Error checking: You do not have to check any errors in this assignment—
assume all inputs will be valid.

Output: Your program should perform the operation specified by the encoded
instruction, and print the following on two separate lines:

• Line 1: The registers and operation, in the form:
<dest> = <src1> <op> <src2>

• Line 2: The values used in the calculation and the result, in the form:
 = <val1> <op> <val2> = <result>

For example, the sample inputs given above would produce the output:
R0 = R1 / R2

 = 2 / 3 = 0

See Section 4: Test Cases for more sample program runs.

16.216: ECE Application Programming M. Geiger
UMass Lowell Program 3

 3

4. Test Cases
Your output should match these test cases exactly for the given input values. I
will use these test cases in grading of your assignment, but will also generate
additional cases that will not be publicly available. Note that these test cases may
not cover all possible program outcomes. You should create your own tests to
help debug your code and ensure proper operation for all possible inputs.

	1. Introduction
	2. Deliverables
	3. Specifications
	4. Test Cases

