
 1

16.216: ECE Application Programming
Fall 2012

Programming Assignment #2: Basic I/O and Operations
Due Monday, 9/17/12, 11:59:59 PM

1. Introduction
This assignment will give you some experience working with C input (using
scanf()) and output (using printf()), as well as arithmetic operations with
variables. You will read input values, use them to calculate some results, and
print those values to the screen.

2. Deliverables
Submit your source file directly to Dr. Geiger (Michael_Geiger@uml.edu) as an
e-mail attachment. Ensure your source file name—not your Visual Studio project
name—is prog2_io.c. Submit only the .c file. Failure to meet this specification
will reduce your grade, as described in the program grading guidelines.

3. Specifications
In this program, you will deal with three different types of 3-dimensional shapes:
a sphere, a cylinder, and a rectangular prism:

Sphere with radius r

Cylinder with height h, radius r

Rectangular prism with height h,
width w, and length l

Input: Your program should prompt the user to enter the dimensions of each
shape (assume the units are cm). All dimensions for each shape should be on
one line, separated by at least one space. (Note: remember that scanf()
ignores whitespace when scanning anything other than a single character—you
do not have to explicitly worry about varying numbers of spaces.)
A sample run of the program might produce the following first three lines (user
inputs are underlined):
Enter radius of sphere (cm): 7
Enter radius and height of cylinder (cm): 3.5 0.5
Enter length, width, and height of prism (cm): 1.2 3.4 5.6

All input values should be treated as double-precision floating point values.

mailto:Michael_Geiger@uml.edu

16.216: ECE Application Programming M. Geiger
UMass Lowell Program 2

 2

Output: Once all dimensions have been read, for each shape, your program
should print the following:

• A blank line (to separate each shape)
• The name of the shape, in capital letters
• All dimensions (in cm) input for that shape, with one dimension per line
• The surface area of the shape (in square cm)
• The volume of the shape (in cubic cm)

It is assumed that you can find the appropriate formulas to calculate these
values. The output lines that would follow the example shown above would be:
SPHERE
Radius: 7.000000 cm
Surface area: 615.752159 square cm
Volume: 1436.755039 cubic cm

CYLINDER
Radius: 3.500000 cm
Height: 0.500000 cm
Surface area: 87.964594 square cm
Volume: 19.242255 cubic cm

RECTANGULAR PRISM
Length: 1.200000 cm
Width: 3.400000 cm
Height: 5.600000 cm
Surface area: 59.680000 square cm
Volume: 22.848000 cubic cm

See Section 5: Test Cases for more sample program runs.

4. Formulating a solution—hints, tips, etc.
Symbolic constants: Recall that the #define directive can be used to assign a
name to frequently-used constants to improve program readability. The value π
(pi) is used in several area and volume formulas, making it a good candidate for
a symbolic constant in this program.

Printing expressions: Values used only for output should not be assigned to a
variable—doing so wastes memory space. Recall that printf() can print the
value of any expression, not just variables. Each of the following lines is therefore
a valid use of this function. Assume you have variables int n and double x:

• printf("n squared: %d, n cubed: %d\n", n * n, n * n * n);
• printf("17/x + 35n = %lf\n", (17 / x) + (35 * n));
• printf("Rectangle with length %d, width %lf has area %lf\n",

n, x, n * x);

16.216: ECE Application Programming M. Geiger
UMass Lowell Program 2

 3

Integer division: Recall that, when converting a floating-point value to an
integer, the fractional part of the number is discarded. This property is particularly
important in integer division: for example, in C, 1 / 2 = 0, since both 1 and 2
are integers. To avoid this issue, one of the two values needs to be a floating-
point value. Either 1.0 / 2 or 1 / 2.0 will give the desired result (0.5).

5. Test Cases
Your output should match these test cases exactly for the given input values. I
will use these test cases in grading of your lab, but will also generate additional
cases that will not be publicly available. Note that these test cases may not cover
all possible program outcomes. You should create your own tests to help debug
your code and ensure proper operation for all possible inputs.

Remember, if you are using Visual Studio or Visual C++ Express, to get your
program to terminate with a message saying, “Press any key to continue …”, use
the Start Without Debugging command (press Ctrl + F5) to run your code.

	1. Introduction
	2. Deliverables
	3. Specifications
	4. Formulating a solution—hints, tips, etc.
	5. Test Cases

