
 1 

EECE.2160: ECE Application Programming 
Spring 2018 

Programming Assignment #4: The “Drunken Sailor” Problem 
Due Friday, 3/2/18, 11:59:59 PM 

1. Introduction 
This assignment, which introduces the use of loops, solves the following problem: given 
a starting location in a city, how long does it take a “drunken sailor” who randomly 
chooses his direction at each intersection to reach the city’s border? You will read input 
values to set up the problem parameters, run several trials to determine an average 
number of steps for the sailor to reach the border, and output the results. 
 
This problem is an example of a “random walk,” a succession of random steps that can 
model real world problems like stock price fluctuation or molecules traveling through 
liquid. The approach is a simple approximation of a Monte Carlo experiment, in which 
repeated random samples are run to find a numerical result. 

2. Deliverables 
Submit your source file by uploading it directly to your Dropbox folder. Ensure your 
source file name is prog4_sailor.c. You should submit only the .c file. Failure to meet 
this specification will reduce your grade, as described in the grading guidelines. 

3. Specifications 
Problem description: The city is organized as a set of M x N blocks. The sailor’s 
position, which must always be an intersection or a point on the border, can be 
represented as a pair of coordinates (X, Y), where 0 ≤ X ≤ M, and 0 ≤ Y ≤ N. 
 
The example below shows a 4 x 3 city, with the sailor at position (3, 2): 
 
Y coord ↑             

 3             
           North  

2       S    é  
          West ç Direction è East 

1           ê  
           South  

0             
X coord à 0  1  2  3  4    
 
At each step of a given trial, the sailor will randomly choose a direction and walk until he 
reaches the next intersection. A trial ends when the sailor reaches one of the city 
borders. Note that each new trial always uses the same starting point. 



EECE.2160: ECE Application Programming  M. Geiger 
UMass Lowell  Program 4 

 2 

Input: Your input must be entered in the order listed below. All inputs are integers. Note 
that your program should prompt the user to enter each value and check that each input 
fits within the bounds described below, as well as ensure there are no formatting errors: 

• A seed value for the random number generator (RNG). If the user enters -1, use 
the system time to seed the RNG; otherwise, the user input is used. See Section 
4, “Hints and Tips,” for more details. 

• M and N, the number of blocks in the X (2 ≤ M ≤ 10) and Y planes (2 ≤ N ≤ 10), 
respectively. This pair of values will be entered on the same line. 

• A starting position for the sailor, input as a pair of integers (X,Y). 
o These values should simply be separated by a space (e.g., 3 5). You 

should not format your input as an (X,Y) pair using parentheses and a 
comma (e.g., (3,5)). 

o The sailor must always start within the city, so the starting coordinates are 
subject to the following bounds: 1 ≤ X ≤ (M-1), 1 ≤ Y ≤ (N-1) 

• T, The number of trials to execute (1 ≤ T ≤ 10). 
 
Output: As noted above, the program should print a prompt for each input. See Section 
5, “Test Cases,” for examples of acceptable prompts. If an input does not fit within the 
bounds described, or the user enters an improperly formatted value, the program should 
display an error message and then prompt the user again to enter that value. See 
Section 4 for hints on bounds checking and error messages. 
 
Once the user has successfully input all values, the program executes each trial, 
starting at the point specified. At each step of a trial, your program generates a random 
number representing the direction the sailor moves and changes his position 
accordingly. Your program should print messages at the following points: 

• At the start of each trial, the program should print a message indicating the start 
of a new trial and the starting point being used. 

o Example: Trial #1 Start: 3 1 

• For each step of each trial, the program should print the direction the sailor 
moves and his new position. 

o Example: North: 3 2 

• At the end of each trial, the program should print the total number of steps taken 
during that trial. 

o Example: Trial #1 total steps: 8 

• Once all trials are complete, the program should calculate the average number 
of steps taken per trial and output that value. 

o Example: Average # of steps over 5 trials: 3.2 

Again, see Section 5: Test Cases for detailed examples of how your output should look. 



EECE.2160: ECE Application Programming  M. Geiger 
UMass Lowell  Program 4 

 3 

4. Hints and Tips 
Bounds checking and error messages: See Lecture 12 (Tuesday, 2/20) for an 
example of how to handle input validation—repeatedly prompting your user to enter 
input values until the inputs are error-free. 
 
Random number generation: The library function rand() generates pseudo-random 
numbers between 0 and RAND_MAX (a large, constant value defined in the header 
<stdlib.h>, which you must include to use this function). To get a random value 
between 0 and N, use the modulus operator (%) as follows: 
 
 X = rand() % (N+1); 
 

For example, to generate one of six different values between 0 and 5, you can use 
rand() % 6. 
 
Note that rand() is not truly random—if you do not provide a different starting point, or 
“seed”, each time you run your program, rand()produces the same values. To specify 
a seed, use the function srand(unsigned int seed). While your test cases may 
not match mine, if you repeatedly use the same seed value, your program should 
produce the same set of random values each time. 
 
A common way to get (close to) true randomness is to use the system time as the seed: 
 

srand(time(0)); 
 
srand() should only be called once per program, before any calls to rand(). To use 
the time() function, you must include the <time.h> header. 
 
The course website contains a short program, dice_example.c, that demonstrates 
the proper use of the rand() and srand() functions. It also contains examples of an 
input validation loop like the one described above. 



EECE.2160: ECE Application Programming  M. Geiger 
UMass Lowell  Program 4 

 4 

5. Test Cases 
Note that, because this program uses random numbers, your outputs for each trial likely 
will not match the test cases below. (The 2x2 city case is an exception—your sailor may 
move in different directions, but every trial should take only 1 step to finish.) What 
should match is the order in which you read input values and the cases in which you 
print error messages.  
 
I will use these test cases in grading of your program, but will also generate additional 
cases that will not be publicly available. Note that these test cases do not cover all 
possible program outcomes. You should create your own tests to help debug your code 
and ensure proper operation for all possible inputs. 
 
I’ve copied and pasted the output from each test case below, rather than showing a 
screenshot of the output window. User input is underlined in each test case, but it won’t 
be when you run the program. 
 
Test Case 1: 
Enter seed (-1 to use system time): 1 
City size in X, Y  (# blocks >= 2 and <= 10): 2 2 
Starting position (X Y): 1 1 
Number of trials: 3 
Trial # 1 Start: 1 1 
  South: 1 0 
Trial # 1 total steps = 1 
 
Trial # 2 Start: 1 1 
  East: 2 1 
Trial # 2 total steps = 1 
 
Trial # 3 Start: 1 1 
  East: 2 1 
Trial # 3 total steps = 1 
 
Average # of steps over 3 trials: 1.00 



EECE.2160: ECE Application Programming  M. Geiger 
UMass Lowell  Program 4 

 5 

Test Case 2: 
Enter seed (-1 to use system time): 1 
City size in X, Y  (# blocks >= 2 and <= 10): 1 1 
# X blocks must be >= 2 and <= 10 
# Y blocks must be >= 2 and <= 10 
City size in X, Y  (# blocks >= 2 and <= 10): 12 3 
# X blocks must be >= 2 and <= 10 
City size in X, Y  (# blocks >= 2 and <= 10): 10 10 
Starting position (X Y): 0 10 
Starting X position must satisfy (1 <= X <= 9) 
Starting Y position must satisfy (1 <= Y <= 9) 
Starting position (X Y): 2 8 
Number of trials: 0 
Number of trials must be > 0 and <= 10 
Number of trials: 1 
Trial # 1 Start: 2 8 
  South: 2 7 
  East: 3 7 
  East: 4 7 
  North: 4 8 
  North: 4 9 
  West: 3 9 
  West: 2 9 
  North: 2 10 
Trial # 1 total steps = 8 
 
Average # of steps over 1 trial: 8.00 

 
Remember, if you are using Visual Studio, to get your program to terminate with a 
message saying, “Press any key to continue …”, use the Start Without Debugging 
command (press Ctrl + F5) to run your code. 
If you need to insert extra code at the end of your program to get that program to pause 
when executing (for example, an infinite loop or the system("pause") function), please 
remember to comment out or remove that code prior to submitting your program. 
 


