
 

 1 

EECE.2160: ECE Application Programming 
Spring 2018 

Programming Assignment #3: A 1-Bit Boolean Calculator 
Due Tuesday, 2/20/18, 11:59:59 PM 

1. Introduction 
In this assignment, you will work with C conditional statements to implement a simple 
Boolean calculator program. This program will also introduce you to Boolean operators, 
which we will explore in much more detail later this semester. 

2. Deliverables 
Submit your source file by uploading it directly to your Dropbox folder. Ensure your 
source file name is prog3_boolean.c. You should submit only the .c file. Failure to 
meet this specification will reduce your grade, as described in the program grading 
guidelines. 

3. Specifications
Input: Your program should prompt the user to enter a simple Boolean expression of 
the form a op b, where a and b are 1-bit operands and op is one of the following 
operators: & (AND), | (OR), ^ (XOR). See Section 6: Boolean Operations for more 
details on these operators and their desired behavior. Examples include: 

• 1 & 1 
• 0 | 0 
• 1 ^ 0 

Output: Given a valid expression, your program should calculate the result and reprint 
the entire expression as well as its result. For example, the expressions listed above will 
produce the following output: 

• 1 & 1 = 1 
• 0 | 0 = 0 
• 1 ^ 0 = 1 

NOTE: Your program should not print the result of an expression if any error occurs. 
See the next page of the assignment for details on possible input errors. 

See Section 5: Test Cases for more sample program runs.  



EECE.2160: ECE Application Programming  M. Geiger 
UMass Lowell  Program 3 
 

 2 

Error checking: Your program should print a descriptive error message under any of 
the conditions below. For examples of valid error messages, see Section 5: Test Cases: 

1. Any of the inputs are incorrectly formatted and therefore cannot be read correctly 
using scanf() 

• Your error message should include the number of input values that 
were entered correctly—for example: 

Error: 2 values entered correctly 

• scanf() returns the number of values correctly read, which you can store in 
a variable to test later. Say you have the following line of code: 

nVals = scanf("%d %d %d", &v1, &v2, &v3); 

If the user enters: 
• 1 2 3 à nVals == 3 

• 1 2 a à nVals == 2  ('a' is not part of a valid int) 
• 1.2 2 3 à nVals == 1  ('.' is not part of a valid int, but 1 is 

read correctly) 
• X1 2 3 à nVals == 0  ('X' is not part of a valid int) 

2. Either (or both) of the operands cannot be represented as a single bit (0 and 1 
are the only valid 1-bit values) 

• Your error message should print the invalid input(s)—for example: 
Error: first input (3) requires > 1 bit 

3. The operator entered is not a valid operator 

• Your error message should print the invalid operator—for example: 
Error: invalid operator X 

NOTE: If the inputs are correctly formatted (i.e., scanf() can read all input values), 
then your program may generate multiple error messages! For example, if the user 
enters the expression 3 X 4, then your program should print: 

  Error: first input (3) requires > 1 bit 
  Error: second input (4) requires > 1 bit 
  Error: invalid operator X 

If scanf() cannot read all input values, your program should only print the error 
message related to a formatting error. For example, if the user enters the expression:   
X 3 4, then your program should print: 

 Error: 0 values entered correctly 



EECE.2160: ECE Application Programming  M. Geiger 
UMass Lowell  Program 3 
 

 3 

4. Hints and Tips 
Using bitwise operators: The &, |, and ^ symbols aren’t operators just designed for 
this program—they’re valid, built-in operators in C. You can use them in an expression 
just as you can use arithmetic operators (+, -, *, /). You don’t need to write conditional 
statements to basically implement the truth tables shown in Section 6. 
For example, assume your input variables are called in1 and in2, you know the user 
entered the & operator, and you want to assign the result of that operation to a variable 
called result. An inefficient way to handle this operation is through if statements—the 
code below is an example of what NOT to do: 
 if (in1 == 0 || in2 == 0) 
  result = 0; 
 else if (in1 == 1 && in2 == 1) 
  result = 1; 

The following simple statement produces the exact same result: 
 result = in1 & in2; 

Unsigned values: Since both input values should only be 0 or 1, you can represent 
these values using unsigned integers (data type unsigned int or simply unsigned). 
Unsigned values are strictly non-negative (0 or positive). 
The format specifier used to read and print unsigned values is %u. The example code 
snippet below demonstrates the use of this format specifier—it declares two unsigned 
integers, prompts for and reads their values, and then prints those values to the screen: 
 unsigned x, y; 
 printf("Enter two values: "); 
 scanf("%u %u", &x, &y); 
 printf("x = %u, y = %u\n", x, y); 
 
  



EECE.2160: ECE Application Programming  M. Geiger 
UMass Lowell  Program 3 
 

 4 

4. Hints and Tips (continued) 
 
Using if/else if vs. multiple if statements: Remember: in an if/else if statement, only 
one of the cases is executed, even if multiple conditions are true. For example, in the 
code below, only the first assignment statement (z = z + 3) will be executed, even 
though the first two conditions are both true: 
 
 int x = 1; 
 int y = 2; 
 if (x == 1) 
  z = z + 3; 
 else if (y == 2) 
  z = z – 10; 
 
If you want both assignment statements that change z to be executed, use multiple if 
statements without the else: 
 
 int x = 1; 
 int y = 2; 
 if (x == 1) 
  z = z + 3; 
 if (y == 2) 
  z = z – 10; 
 



EECE.2160: ECE Application Programming  M. Geiger 
UMass Lowell  Program 3 
 

 5 

5. Test Cases 
Your output should match these test cases exactly for the given input values. I will use 
these test cases in grading of your program, but will also generate additional cases that 
will not be publicly available. Note that these test cases do not cover all possible 
program outcomes. You should create your own tests to help debug your code and 
ensure proper operation for all possible inputs. 
 
I’ve copied and pasted the output from each test case below, rather than showing a 
screenshot of the output window. User input is underlined in each test case, but it won’t 
be when you run the program. 
 
Test Case 1: 
Enter Boolean expression: 1 & 0 
1 & 0 = 0 
 
Test Case 2: 
Enter Boolean expression: 0 ^ 1 
0 ^ 1 = 1 
 
Test Case 3: 
Enter Boolean expression: 1 | x 
Error: 2 values entered correctly 
 
Test Case 4: 
Enter Boolean expression: 4 + 1 
Error: first input (4) requires > 1 bit 
Error: invalid operator + 
 
 
Remember, if you are using Visual Studio, to get your program to terminate with a 
message saying, “Press any key to continue …”, use the Start Without Debugging 
command (press Ctrl + F5) to run your code. 
If you need to insert extra code at the end of your program to get that program to pause 
when executing (for example, an infinite loop or the system("pause") function), please 
remember to comment out or remove that code prior to submitting your program. 



EECE.2160: ECE Application Programming  M. Geiger 
UMass Lowell  Program 3 
 

 6 

6. Boolean Operations 
The C language supports three binary Boolean operations: AND, OR, and XOR. These 
operations use the binary operators shown below. (Remember that a binary operator 
works with two values.) 

Boolean  
operation 

C bitwise 
operator 

Example 
expression 

AND & X & Y 
OR | A | 0 

XOR 
(exclusive or) ^ 1 ^ B 

Since this assignment deals only with 1-bit values, you only need to understand how 
these operations handle the values 0 and 1. The table below—called a truth table—
shows the outcome for all three operators on all possible pairs of 1-bit values: 

X Y X & Y X | Y X ^ Y 
0 0 0 0 0 
0 1 0 1 1 
1 0 0 1 1 
1 1 1 1 0 

Remember, you do not need to write conditional statements to implement these 
truth tables—simply use the appropriate operator (&, |, ^) with your input 
variables. 


