
 1

EECE.2160: ECE Application Programming
Summer 2016

Lecture 11: Key Questions

June 15, 2016

For today’s exercise, you will complete the following functions that work with the structures
Name and StudentInfo. The structure definitions are listed below:

typedef struct {
 char first[50];
 char middle;
 char last[50];
} Name;

typedef struct {
 Name sname;
 unsigned int ID;
 double GPA;
} StudentInfo;

The function descriptions are as follows:

For the Name structure:

• void printName(Name *n): Print the name pointed to by n, using format
<first> <middle>. <last>

• void readName(Name *n): Prompt for and read a first, middle, and last name, and
store them in the structure pointed to by n

For the StudentInfo structure:

• void printStudent(StudentInfo *s): Print information about the student
pointed to by s

• void readStudent(StudentInfo *s): Prompt for and read information into
the student pointed to by s

• void printList(StudentInfo list[], int n): Print the contents of an
array list that contains n StudentInfo structures

• int findByLName(StudentInfo list[], int n, char lname[]):
Search for the student with last name lname in the array list. Return the index of the
structure containing that last name, or -1 if not found

• int findByID(StudentInfo list[], int n, unsigned int sID):
Search for the student with ID # sID in the array list. Return the index of the structure
containing that last name, or -1 if not found

EECE.2160: ECE Application Programming M. Geiger
Summer 2016 Lecture 11: Key Questions

 2

From Name.c:

// Print contents of Name struct
void printName(Name *n) {

}

// Read information into existing Name
void readName(Name *n) {

}

From StudentInfo.c:

// Print information about student
void printStudent(StudentInfo *s) {

}

// Reads student information into existing structure
void readStudent(StudentInfo *s) {

}

EECE.2160: ECE Application Programming M. Geiger
Summer 2016 Lecture 11: Key Questions

 3

From StudentInfo.c (continued):

// Print list of students
void printList(StudentInfo list[], int n) {

}

// Find student in list, based on last name
// Returns index if student found, -1 otherwise
int findByLName(StudentInfo list[], int n, char lname[]) {

}

EECE.2160: ECE Application Programming M. Geiger
Summer 2016 Lecture 11: Key Questions

 4

From StudentInfo.c (continued):

// Find student in list, based on ID #
// Returns index if student found, -1 otherwise
int findByID(StudentInfo list[], int n, unsigned int sID) {

}

EECE.2160: ECE Application Programming M. Geiger
Summer 2016 Lecture 11: Key Questions

 5

Dynamic memory allocation questions:
1. Explain the malloc() function.

2. Explain the use of type casting, and why it is necessary with the allocation functions.

EECE.2160: ECE Application Programming M. Geiger
Summer 2016 Lecture 11: Key Questions

 6

3. Explain the calloc() function.

4. Explain the realloc() function.

EECE.2160: ECE Application Programming M. Geiger
Summer 2016 Lecture 11: Key Questions

 7

5. Explain how free() is used to deallocate memory.

6. Example: What does the following program print?

void main() {
 int *arr;
 int n, i;

 n = 7;
 arr = (int *)calloc(n, sizeof(int));
 for (i = 0; i < n; i++)
 printf("%d ", arr[i]);
 printf("\n");

 n = 3;
 arr = (int *)realloc(arr, n * sizeof(int));
 for (i = 0; i < n; i++) {
 arr[i] = i * i;
 printf("%d ", arr[i]);
 }

 n = 6;
 arr = (int *)realloc(arr, n * sizeof(int));
 for (i = 0; i < n; i++) {
 arr[i] = 10 - i;
 printf("%d ", arr[i]);
 }

 free(arr);
}

EECE.2160: ECE Application Programming M. Geiger
Summer 2016 Lecture 11: Key Questions

 8

7. What are the common pitfalls of dynamic memory allocation?

8. Explain how to use dynamic memory allocation with strings.

9. Explain how to use dynamic memory allocation with two-dimensional arrays.

EECE.2160: ECE Application Programming M. Geiger
Summer 2016 Lecture 11: Key Questions

 9

10. Example: Write each of the following functions:
a. char *readLine(): Read a line of data from the standard input, store that data in a

dynamically allocated string, and return the string (as a char *)
Hint: Read the data one character at a time and repeatedly reallocate space in string

EECE.2160: ECE Application Programming M. Geiger
Summer 2016 Lecture 11: Key Questions

 10

b. int **make2DArray(int total, int nR): Given the total number of values and
number of rows to be stored in a two-dimensional array, determine the appropriate number of
columns, allocate the array, and return its starting address
Note: if nR does not divide evenly into total, round up. In other words, an array with 30
values and 4 rows should have 8 columns, even though 30 / 4 = 7.5

