
 1

16.216: ECE Application Programming
Summer 2012

Exam 2

August 2, 2012

Name: __ ID #: _________________________

For this exam, you may use only one 8.5” x 11” double-sided page of notes. All electronic
devices (e.g., calculators, cellular phones, PDAs) are prohibited. If you have a cellular phone,
please turn it off prior to the start of the exam to avoid distracting other students.

The exam contains 3 questions for a total of 100 points. Please answer the questions in the spaces
provided. If you need additional space, use the back of the page on which the question is written
and clearly indicate that you have done so.

Please read each question carefully before you answer. In particular, note that:

• Question 3 has three parts, but you are only required to complete two of the three parts.
o You may complete all three parts for up to 10 points of extra credit. If you do so,

please clearly indicate which part is the extra one—I will assume it is part (c)
if you mark none of them.

• For each part of that problem, you must complete a short program. I have written part of
the program for you and provided comments to describe what each missing piece of code
should do.

• You can solve each problem using only the variables that have been declared, but you
may declare and use other variables if you want.

• Note that you may, if you need more space, complete each of these problems on the back
of another page—just clearly note where your solution is.

You will have two hours to complete this exam.

Q1: Multiple choice / 20
Q2: Functions and pointers / 40
Q3: Loops / 40

TOTAL SCORE / 100
EXTRA CREDIT / 10

 2

1. (20 points, 5 points per part) Multiple choice
For each of the multiple choice questions below, clearly indicate your response by circling or
underlining the choice you think best answers the question.

a. You are given the following short program:

int i = 10;
while (i > 0) {
 i--;
 if (i > 3)
 continue;

 else if ((i % 2) == 0)
 break;
}

How many iterations will this loop execute?

i. 10

ii. 8

iii. 7

iv. 3

v. An infinite number—the loop never ends

b. You are given the following function prototype:

double f(int a, int b);

In a program with integer variables x and y, and double-precision variable d, which of the
following calls to function f() would not compile (i.e., which one is an incorrect call to f())?

i. f(x, y);

ii. x = f(y, y + 2);

iii. d = f(&y, &x);

iv. d = f(5, 7);

v. d = f(-3, x);

 3

1 (cont.)
c. Given the following code snippet:

int x = 1;
int i = 0;
while (i <= 3) {
 x = x * 2;
 i++;
}

Which of the following choices can replace the while loop and produce the exact same value
for x? Assume x is always initialized to 1.

i. for (i = 1; i < 4; i++)

ii. for (i = 0; i < 3; i++)

iii. for (x = 0; x <= 3; x++)

iv. for (i = 3; i >= 0; i--)

v. None of the above

d. Which of the following “functions” would you find most useful? Circle all that apply (and

please don’t waste too much time on this “question”).

i. set_all_16_216_grades(100);

ii. set_program_status(&program3, &program4, "graded");

iii. print_answer_key_to_screen();

iv. set_overall_GPA(4.0);
graduate_now();

 4

2. (40 points) Functions and pointers
For each short program shown below, list the output exactly as it will appear on the screen. Be
sure to clearly indicate spaces between characters when necessary.

You may use the available space to show your work as well as the output; just be sure to clearly
mark where you show the output so that I can easily recognize your final answer.

a. (14 points)
void main() {

int var1, var2, var3;
int *pt1, *pt2, *pt3;

pt1 = &var2;
pt2 = &var3;
pt3 = &var1;

var1 = 16;
var3 = 216;
*pt1 = *pt3 + 7;
pt1 = pt2;
*pt2 = *pt3 + *pt1;

printf("%d %d %d\n", var1, var2, var3);
printf("%d %d %d\n", *pt1, *pt2, *pt3);

}

 5

2 (cont.)

b. (12 points)
int mac(int v1, int v2, int v3) {
 return v1 * v2 + v3;
}

void main() {
 int r1, r2, r3;

 r1 = mac(2,2,7);
 r2 = mac(-2,3,9);
 r3 = mac(r1, r2, 7);

 printf("%d %d %d\n", r1, r2, r3);
 printf("%d\n", mac(r3,r2,r1));
 printf("%d\n", mac(r1,r2,r3));

}

 6

c. (14 points)
int swapIfGT(int *x, int *y) {

int temp;

if (*x > *y) {
 temp = *x;
 *x = *y;
 *y = temp;
 return 1;
}

return 0;

}

void printVars(int *a, int *b) {
if (swapIfGT(a,b) == 1)
 printf("%d > %d\n", *a, *b);
else
 printf("%d <= %d\n", *a, *b);

}

void main() {
int v1, v2, v3, v4;
v1 = 5;
v2 = 7;
v3 = 9;
v4 = 1;

printVars(&v1,&v2);
printVars(&v3,&v4);
printVars(&v2,&v3);
printVars(&v1,&v4);

}

 7

3. (40 points, 20 per part) Loops
For each part of this problem, you are given a short program to complete. CHOOSE ANY TWO
OF THE THREE PARTS and fill in the space provided with appropriate code. You may
complete all three parts for up to 10 points of extra credit, but must clearly indicate which
part is the extra one—I will assume it is part (c) if you mark none of them.

a. Repeatedly prompt a user to enter two double-precision values and then read those numbers.

Your program should end when the second number entered is less than the first—at that
point, print the maximum value entered. A sample run is below; user input is underlined:

Enter two values: 1 3
Enter two values: -0.7 1.234
Enter two values: 55 55
Enter two values: 16.216 16.217
Enter two values: 2.3 -3.7
Max value: 16.217000

void main() {
double val1, val2; // Input values
double max; // Max value—you may assume, as Visual

 // Studio does, that this variable
 // initially holds the lowest

// possible negative value if it’s
// not explicitly initialized

 // REPEATEDLY PROMPT USER TO ENTER TWO VALUES—MAY TEST END
 // CONDITION HERE OR SPACE BELOW, DEPENDING ON LOOP TYPE

 printf("Enter two values: ");
 scanf("%lf %lf", &val1, &val2);

 // DETERMINE IF EITHER VALUE IS NEW MAX VALUE

// MAY TEST LOOP END CONDITION HERE

printf("Max value: %lf\n", max);
}

 8

b. Prompt for and read a series of characters and count the number of whitespace characters—
spaces, tabs ('\t') and newlines ('\n')—in the input. Stop reading if the user enters the
same non-whitespace character twice in a row. Print the total number of whitespace
characters. The sample below contains 1 tab, 3 spaces, and 2 newlines (input is underlined):

ab 3 6 ? (Note: tab is between ‘b’ and ‘3’)
h Q
zz
Total whitespace characters: 6

void main() {
char inChar; // Input value
char lastChar; // Input value from previous iteration

 char spaceCnt; // # whitespace characters

 // INITIALIZE VARIABLES AS NEEDED

// REPEATEDLY (1) SAVE RESULT OF PREVIOUS ITERATION, AND
// (2) READ NEW CHARACTER

 scanf("%c", &inChar);

 // WHITESPACE CHARACTER FOUND—INCREMENT COUNT

 // INPUT CHARACTER ISN’T WHITESPACE AND MATCHES VALUE
 // FROM PREVIOUS ITERATION--EXIT

printf("Total whitespace characters: %d\n", spaceCnt);
}

 9

c. Complete the program below so that it reads a positive, non-zero integer, n, then prints all
values between 1 and n, including n. The output should be formatted as follows:
• The first line of output contains a single value.
• For all other lines, use the last value on the previous line to determine the number of

values to print on the following line.

See the examples below for further clarification; user input is underlined.

Enter n: 8
1
2
3 4
5 6 7 8

Enter n: 14
1
2
3 4
5 6 7 8
9 10 11 12 13 14

void main() {
 int n; // Input value
 int valsPerLine; // Values to be printed on the current line
 int numPrinted; // Number of values printed already on the

// current line
 int i; // Loop index

 // INITIALIZE VARIABLES AS NEEDED

 // Prompt for and read input values
 printf("Enter n: ");
 scanf("%d", &n);

 // LOOP TO PRINT ALL VALUES BETWEEN 1 AND n, INCLUDING n

 printf("%d ", i);

 // UPDATE numPrinted

// CHECK numPrinted--IF LIMIT HAS BEEN REACHED, MOVE TO
// NEXT LINE, AND SET valsPerLine AND numPrinted
// APPROPRIATELY

}

	Summer 2012
	Exam 2
	August 2, 2012
	TOTAL SCORE
	EXTRA CREDIT

