
 1

EECE.2160: ECE Application Programming
Spring 2018

Exam 1 Solution

1. (46 points) C input/output; operators
a. (13 points) Show the output of the short program below exactly as it will appear on the

screen. Be sure to clearly indicate spaces between characters when necessary.
You may use the available space to show your work as well as the output; just be sure to clearly
mark where you show the output so that I can easily recognize your final answer.

int main () {
 int i;
 double d1 = 9.0;
 double d2, d3;

 i = 4.5 + d1 / 2; i = 4.5 + 9.0 / 2 = 4.5 + 4.5 = 9.0 = 9
 (truncated to int)

 d2 = d1 / 100.0; d2 = 9.0 / 100.0 = 0.09

 d3 = i + 0.21598; d3 = 9 + 0.21598 = 9.21598

 d1 = d1 / 10; d1 = 9.0 / 10 = 0.9

 printf("%d\n", i);
 printf("%.0lf\n%.3lf", d1, d2);
 printf(" %.4lf\n", d3); // Note: 1 space before '%'

 return 0;
}

OUTPUT:

9

1

0.090 9.2160

 2

1 (continued)
b. (13 points) For this program, assume the user inputs the line below. The digit '2' in

2+1.60 is the first character the user types. There is exactly one space (' ') between
2+1.60 and 20.18.

You must determine how scanf() handles this input and then print the appropriate results,
exactly as they would be shown on the screen. The program may not read all characters on the
input line, but scanf() will read something into all seven variables declared in the program.

2+1.60 20.18

int main () {
 int int1, int2;
 double d1, d2;
 char ch1, ch2, ch3, ch4;

 scanf("%lf %c%d %c %d%c%c %lf",
 &d1, &ch1, &int1, &ch2,
 &int2, &ch3, &ch4, &d2);

 printf("%d %d\n", int1, int2);
 printf("%.2lf %.2lf\n", d1, d2);
 printf("%c%c%c%c\n", ch1, ch2, ch3, ch4);

 return 0;
}

Solution:
d1 = 2
ch1 = '+' (first non-space character after 2)
int1 = 1
ch2 = '.' (first non-space character after 1)
int2 = 60
ch3 = ' ' (first character after 60)
ch4 = '2'
d2 = 0.18

OUTPUT:
1 60
2.00 0.18
+. 2

 3

1 (continued)
a. (20 points) Complete this program, which calculates a student’s overall GPA after 4

semesters, given the GPA and credits per semester. The program prompts for and reads the
four GPAs and credit counts, then calculates and prints the appropriate values, as in the
example below (input is underlined):

Enter GPAs: 3.5 3.2 2.7 3.8
Enter credits: 14 17 18 15
Total credits: 64
Overall GPA: 3.27 ß NOTE: GPA printed using 2 decimal places

The overall GPA is based on a weighted average. For example, after 2 semesters, a student who
earned a 3.5 GPA while taking 12 credits and a 3.0 GPA while taking 15 credits would have a
GPA of (3.5 * 12 + 3.0 * 15) / (12 + 15) = 3.22.

Students were responsible for entering bold, underlined, italicized code.

void main() {
 double G1, G2, G3, G4; // Grade point averages
 int C1, C2, C3, C4; // Credits per semester
 int total; // Overall total credits

 // Prompt for and read GPAs and credit counts
 printf("Enter GPAs: ");
 scanf("%lf %lf %lf %lf", &G1, &G2, &G3, &G4);

 printf("Enter credits: ");
 scanf("%d %d %d %d", &C1, &C2, &C3, &C4);

 // Calculate and print total credits and overall GPA
 total = C1 + C2 + C3 + C4;
 printf("Total credits: %d\n", total);
 printf("Overall GPA: %.2lf\n",
 (G1 * C1 + G2 * C2 + G3 * C3 + G4 * C4) / total);
}

 4

2. (34 points) Conditional statements
a. (14 points) For the short program shown below, the first line of output (the prompt "Enter

val, 2 sets of endpoints: ") and the user input (5.6 1.2 3.4 7.8 9.0) is
listed at the bottom of the page.

Complete the rest of the output for this program, given those input values.
int main() {
 double testval;
 double r1lo, r1hi;
 double r2lo, r2hi;

 printf("Enter val, 2 sets of endpoints: ");
 scanf("%lf %lf %lf %lf %lf",
 &testval, &r1lo, &r1hi, &r2lo, &r2hi);

 if (testval <= r1hi && r1lo <= testval) Condition is false,
 printf("R1\n"); so else case
 else { executes

 if (r2lo > testval) 7.8 > 5.6, so "Below R2" prints
 printf("Below R2\n");

 if (r2hi < testval) This if/else block is independent
 printf("Above R2\n"); of previous one. 9.0 > 5.6, so
 else else case executes, and "In R2?"
 printf("In R2?\n"); prints
 }

 if (r1lo <= r2hi && r2lo <= r1hi) 7.8 > 3.4, so second
 printf("Overlap\n"); half of condition is
 else false, overall condition
 printf("No overlap\n"); is false, and "No
 return 0; overlap" prints
}

OUTPUT (the first line is given; write the remaining line(s)):
Enter val, 2 sets of endpoints: 5.6 1.2 3.4 7.8 9.0
Below R2
In R2?
No overlap

 5

2 (continued)
b. (20 points) Complete this program, which implements two simple operations on a pair of

integers. Your program should prompt for and read the operator and integers, then check for
one of the conditions below, printing the appropriate output:

• If the operator is an uppercase or lowercase 'A', print the average of the integers.

• If the operator is an uppercase or lowercase 'M', print the higher (max) of the integers.

• In all other cases, print "Error".

All numeric outputs should be printed with two digits after the decimal point. Three test cases
are shown below, with user input underlined.
Enter input: A 5 10
Avg = 7.50

Enter input: m 6 2.1
Max = 6.00

Enter input: x 3 5
Error

Students were responsible for entering bold, underlined, italicized code.
void main()
 char op; // Operator
 double v1, v2; // Values to operate on
 double max; // Maximum value for 'M'/'m' case

 // Prompt for and read expression
 printf("Enter input: ");
 scanf(" %c %lf %lf",&op, &v1, &v2);

 // Evaluate operator
 switch (op) {

 // Average
 case 'A': case 'a':

 printf("Avg = %.2lf\n", (v1 + v2) / 2);
 break;

 // Max value
 case 'M': case 'm':
 if (v1 > v2) max = v1;
 else max = v2;

 printf("Max = %.2lf\n", max);
 break;

 // Invalid op
 default:
 printf("Error\n");

 }

 6

3. (20 points, 5 points each) While and do-while loops
For questions 3a and 3b, circle or underline the one choice you think best answers the question.

a. What is the output of the short code sequence below?

int i = 4;
int j = 2;
while (i != j) {
 i = i + 4; i = 8, then 12, then 16
 j = j * 2; j = 4, then 8, then 16
 printf("%d %d ", i, j);

 }

i. 4 2 8 4 12 8 16 16

ii. 4 2 8 4 12 8

iii. 8 4 12 8 16 16

iv. 8 4 12 8

v. The loop prints nothing because the loop condition is initially false

b. What is the output of the short code sequence below?

int x = -3;
int y = 3;
do {
 printf("+ ");
 y = -x + 2; y = 5, then 4, then 3, then 2
 x = x + 1; x = -2, then -1, then 0, then 1
} while ((x < y) && (y > 2));

i. +

ii. + +

iii. + + +

iv. + + + +

v. + + + + +

 7

3 (continued)
c. Which pair of loops below produce the exact same output? Circle TWO choices to answer

this question.

i. int a = 1;
 while ((12 % a) == 0) { Loop while 12 is divisible by a
 printf("%d ", a); Prints: 1 2 4
 a = a * 2; Exits once a = 8
 }

ii. int b = 1; Loop condition initially false,
 do { but do-while guarantees 1 iter.
 printf("%d ", b); Prints: 1
 b = b * 2; Exits after 1 iteration (2 < 4)
 } while (b > 4);

iii. int c = 4;
 do {
 printf("%d ", 5 - c); Prints: 1 3 4
 c = c / 2; c = 4 à 2 à 1 à 0
 } while (c > 0);

iv. int d = 1;
 while (d < 5) {
 printf("%d ", d); Prints: 1 2 4
 d = d + d; Exits once d = 8
 }

d. Which of the following statements accurately reflect your opinion(s)? Circle all that apply

(but please don’t waste too much time on this “question”)!

i. “This course is moving too quickly.”

ii. “This course is moving too slowly.”

iii. “I’ve attended very few lectures, so I don’t really know what the pace of the course is.”

iv. “I hope the next exam is as easy as this question.”

All of the above are “correct.”

 8

4. (10 points) EXTRA CREDIT
REMEMBER, YOU CANNOT GET EXTRA CREDIT WITHOUT WRITING AT LEAST
PARTIAL SOLUTIONS FOR ALL OTHER PROBLEMS ON THE EXAM.
Complete the program below, which reads an integer, val, copies its original value so it may be
reprinted at the end, and then determines the number of digits in that integer. The variable n
should hold the number of digits in val when the program is done. For example, if val = 5, n =
1; if val = 1033, n = 4.

The number of digits in val can be found by repeatedly dividing val until the result is 0; the
number of steps required to reach that point is the number of digits in val. For example, if val
= 16216, the program goes through the sequence below to determine val has 5 digits:

 16216 à 1621 à 162 à 16 à 1 à 0 (each arrow represents one step)

Students were responsible for entering bold, underlined, italicized code.

int main() {
 int val, valCopy; // Input value and its copy
 int n; // Number of digits in val

 printf("Enter number: "); // Prompt for and read input value
 scanf("%d", &val);

 valCopy = val;
 n = 0;

 // COMPLETE PROGRAM AS DESCRIBED ABOVE
 do {
 n++;
 val = val / 10;
 } while (val != 0);

 // Print final results
 printf("Value: %d, # digits: %d\n", valCopy, n);
 return 0;
}

