
 1

EECE.2160: ECE Application Programming
Spring 2017

Exam 1 Solution

1. (20 points, 5 points per part) Multiple choice
For each of the multiple choice questions below, clearly indicate your response by circling or
underlining the one choice you think best answers the question.

a. What is the output of the short code sequence below?

int i = 1;
int sum = 10;
while (sum < 15) {
 sum = sum + i;
 printf ("%d %d ", i, sum);
 i = i * 2;
}

i. 1 11 2 13

ii. 2 11 4 13

iii. 1 11 2 13 4 17

iv. 2 11 4 13 8 17

v. 1 10 2 11

 2

b. What is the output of the short code sequence below?

int x = 10;
do {
 x = x / (-3);
 printf ("%d ", x);
 x = -x;
} while (x > 1);
printf ("%d ", x);

i. -3 1

ii. -3 -1

iii. -3 -1 1

iv. -3 1 -1

v. None of the above

 3

c. Given the code sequence below:
int var;
scanf ("%d", &var);
switch (var % 3) {
case 2:
 var = var % 3;
 break;
case 1:
 var = var % 3;
case 0:
 var = var + 1;
}
printf ("%d", var);

Which of the following possible input values will produce the output “2” (double quotes are not
part of the output)?

A. 0
B. 2
C. 4
D. 6
E. 8

i. A and C

ii. B and C

iii. B and E

iv. B, C and E

v. None of the above

d. Which of the following statements accurately reflect your opinion(s)? Circle all that apply

(but please don’t waste too much time on this “question”)!

i. “This course is moving too quickly.”

ii. “This course is moving too slowly.”

iii. “I’ve attended very few lectures, so I don’t really know what the pace of the course is.”

iv. “I hope the rest of the exam is as easy as this question.”

All of the above were “correct.”

 4

2. (40 points) C input/output; operators
For each short program shown below, list the output exactly as it will appear on the screen. Be
sure to clearly indicate spaces between characters when necessary.
You may use the available space to show your work as well as the output; just be sure to clearly
mark where you show the output so that I can easily recognize your final answer.

a. (12 points)
int main () {
 int a;
 double d1, d2;
 d1 = 10.0;
 d2 = 5.0;
 d1 = d1 / d2; d1 = 10.0 / 5.0 = 2.0

 a = d1 + d2 * 0.5; a = 2.0 + 5.0 * 0.5 = 2.0 + 2.5
 = 4.5 = 4 (truncated to int)

 d2 = d2 + a / d1; d2 = 5.0 + 4 / 2.0 = 5.0 + 2.0 = 7.0

 printf ("%d", a);
 printf ("\number: %lf\n%lf", d1, d2);
 return 0;
}

OUTPUT (note that both doubles print with default precision):
4
umber: 2.000000
7.000000

 5

2 (continued)
b. (14 points)
int main () {
 int i;
 double d1, d2, d3;
 d1 = 15 / 3.0; d1 = 5.0

 d2 = d1 + 2.25; d2 = 5.0 + 2.25 = 7.25

 i = d2 – d1 + 1.23; i = 7.25 – 5.0 + 1.23
 = 3.48 = 3 (truncated to int)

 d3 = 1.26 + 4 * (d2 - i); d3 = 1.26 + 4 * (7.25 – 3)
 = 1.26 + 4 * 4.25
 = 1.26 + 17 = 18.26

 printf ("%d\n", i);
 printf ("%.2lf\n", d1);
 printf ("%.1lf\n", d2); // Print d2 with precision of 1
 printf ("%.0lf\n", d3);
 return 0;
}

OUTPUT:

3
5.00
7.2 ß7.3 is also acceptable—some systems round 7.25 up
18 ßd3 rounded to nearest integer when printed

 6

2 (continued)
c. (14 points)

For this program, assume the user inputs the line below. The digit '1' is the first character the
user types. There are two spaces (' ') between the 1.38 and the -5.127.

You must determine how scanf() handles this input and then print the appropriate results.
Note that the program may not read all characters on the input line.

1.38 -5.127 1.63 .48

int main () {
 char ch1, ch2, ch3;
 int i1;
 double d1, d2, d3;

 scanf("%lf %c %lf %d %lf %c%c",
 &d1, &ch1, &d2, &i1, &d3, &ch2, &ch3);
 printf("%d\n", i1);
 printf("%lf %.2lf %.0lf\n", d1, d2, d3);
 printf("%c%c%c\n", ch1, ch2, ch3);

 return 0;
}

Solution:
d1 = 1.38
ch1 = '-' (first non-space character after 1.38)
d2 = 5.127 (next number after the '-')
i1 = 1 (next whole number after 5.127)
d3 = 0.63 (next real number after 1)
ch2 = '.' (first non-space character after 1.63)
ch3 = '4' (first character after '.')

OUTPUT:
1
1.380000 5.13 1
-.4

 7

3. (40 points, 20 per part) C input/output; conditional statements
a. This program should read three values representing possible sides of a triangle, then check

(1) if the values represent a valid triangle, and (2) if valid, if they represent a right triangle.
The values may be entered in any order—they’re not necessarily sorted. Note that:

• For three numbers to be the sides of a valid triangle, the sum of any two sides must be
greater than the third. You will have to check all possible combinations of two sides.

• For three numbers to be the sides of a right triangle, they must satisfy the Pythagorean
theorem: a2 + b2 = c2. You will have to check all possible combinations of two sides.

Students were responsible for writing bold, underlined, italicized code.
void main() {
 double s1, s2, s3; // Side lengths
 double sq1, sq2, sq3; // Squares of side lengths

 // Prompt for and read side lengths
 printf("Enter sides: ");
 scanf("%lf %lf %lf", &s1, &s2, &s3);

 // Test for valid triangle

 if ((s1 + s2 > s3) && (s1 + s3 > s2) && (s2 + s3 > s1)) {

 printf("Valid triangle\n");

 // Test for right triangle
 sq1 = s1 * s1;
 sq2 = s2 * s2;
 sq3 = s3 * s3;

 if ((sq1 + sq2 == sq3) ||
 (sq1 + sq3 == sq2) ||
 (sq2 + sq3 == sq1))
 printf("Right triangle\n");
 }

 // Account for cases that aren’t valid triangles
 else
 printf("Not a valid triangle\n");
}

 8

3 (continued)
b. We obtained a copy of the program used to determine the university’s response to a range of

projected snow totals. You must complete the partial version below. The program prompts
for and reads the minimum and maximum projected snowfall, then does the following:
• Checks to ensure min and max are in the correct order, printing an error message if not
• If the snowfall will be at least 0.1 inches, print "Parking ban"
• If the snowfall will be less than 3 inches, print "Still open"
• If the entire range of possible totals falls between 3 and 6 inches, print "Delay"
• If the snowfall could be more than 6 inches, print "Fine, we'll close"

Three sample program runs are shown below (user input underlined):
Min/max snow: 0 0.05
Still open

Min/max snow: 0.5 2.9
Parking ban
Still open

Min/max snow: 5 7
Parking ban
Fine, we’ll close

Students were responsible for writing bold, underlined, italicized code.
void main() {
 double min, max; // Minimum/maximum projected snowfall

 printf("Min/max snow: "); // Prompt for and read range

 scanf("%lf %lf", &min, &max);

 // Error test

 if (min > max)
 printf("You didn't follow directions!\n");

 // Test min/max & print messages (may print > 1 message)
 else {
 if (min > 0.1)
 printf("Parking ban\n");

 if (max < 3)
 printf("Still open\n");

 else if ((min >= 3) && (max <= 6))
 printf("Delay\n");

 else
 printf("Fine, we'll close\n");

 }
}

 9

3 (continued)
c. This program prompts the user to enter a 2- or 3-letter abbreviation indicating their

engineering major: EE (Electrical), CpE (Computer), ChE (Chemical), CEE
(Civil/Environmental), or PE (Plastics). The program should read all user input characters.

After reading the abbreviation, the program should test as many characters as possible to
determine the correct major and print that major. Assume the user makes no errors. Three sample
program runs are shown below, with the user input underlined:

Enter major: CpE
Computer

Enter major: EE
Electrical

Enter major: ChE
Chemical

Students were responsible for writing bold, underlined, italicized code.
void main() {

 char c1, c2, c3; // Characters to hold major

 // Prompt for and read major
 printf("Enter major: ");

 scanf(" %c%c%c", &c1, &c2, &c3);

 // Test 1st character (and others, if needed) to pick major
 switch (c1) {
 case 'E':
 printf("Electrical\n");
 break;
 case 'C':
 if (c2 == 'p')
 printf("Computer\n");
 else if (c2 == 'h')
 printf("Chemical\n");
 else if (c2 == 'E')
 printf("Civil/Environmental\n");
 break;
 case 'M':
 printf("Mechanical\n");
 break;
 case 'P':
 printf("Plastics\n");
 break; // Not strictly necessary

 }
}

