
 

 1 
 

EECE.2160: ECE Application Programming 
Spring 2016 

 
Lectures 30, 31, & 32: Key Questions 

April 15, 20, & 22, 2016 
 
Note: This handout will be used for the next two lectures—if you get the handout during Lec. 
30, please bring it to Lec. 31!  
 
1. Example: Write each of the following functions: 
a. char *readLine(): Read a line of data from the standard input, store that data in a 

dynamically allocated string, and return the string (as a char *) 
Hint: Read the data one character at a time and repeatedly reallocate space in string 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



EECE.2160: ECE Application Programming  M. Geiger & P. Li 
Spring 2016  Lecture 30 & 31: Key Questions 
 

 2 
 

b. int **make2DArray(int total, int nR): Given the total number of values and 
number of rows to be stored in a two-dimensional array, determine the appropriate number of 
columns, allocate the array, and return its starting address 
Note: if nR does not divide evenly into total, round up. In other words, an array with 30 
values and 4 rows should have 8 columns, even though 30 / 4 = 7.5 
 

 
 
  

 
 
  
 

 
 
 
 
 
 

 
 
 
  



EECE.2160: ECE Application Programming  M. Geiger & P. Li 
Spring 2016  Lecture 30 & 31: Key Questions 
 

 3 
 

2. Explain the use of general data structures and pointer-based data structures in particular. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. Describe the general design of a linked list. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



EECE.2160: ECE Application Programming  M. Geiger & P. Li 
Spring 2016  Lecture 30 & 31: Key Questions 
 

 4 
 

4. Describe the structure used for each node in the list. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. Explain the operation of the following function, which adds a node to the beginning of the 
list and returns a pointer to that node. 
 

LLnode *addNode(LLnode *list, int v) { 
 LLnode *newNode; 
 // Allocate space for new node; exit if error 
 newNode = (LLnode *)malloc(sizeof(LLnode)); 
 if (newNode == NULL) { 
  fprintf(stderr,  
    "Error: could not allocate new node\n"); 
  exit(0); 
 } 
 newNode->value = v;    // Copy value to new node 
 newNode->next = list;  // next points to old list 
 return newNode; 
} 
 



EECE.2160: ECE Application Programming  M. Geiger & P. Li 
Spring 2016  Lecture 30 & 31: Key Questions 
 

 5 
 

6. Write each of the following functions: 
a. Finding item in list (Function should return pointer to node if found and return NULL 

otherwise)  
LLnode *findNode(LLnode *list, int v) { 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
} 
  



EECE.2160: ECE Application Programming  M. Geiger & P. Li 
Spring 2016  Lecture 30 & 31: Key Questions 
 

 6 
 

b. Write the following function used to remove a node from list: 
• Must deallocate space for deleted node 
• Function should return pointer to start of list after it has been modified 

o No modifications should be made if value v is not in list 
o Hint: you can use the findNode() function in this function, but you may not 

want to! 
• Note: removing first element in list is special case 

 
LLnode *delNode(LLnode *list, int v) { 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}  



EECE.2160: ECE Application Programming  M. Geiger & P. Li 
Spring 2016  Lecture 30 & 31: Key Questions 
 

 7 
 

7. Describe how to maintain a sorted linked list. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



EECE.2160: ECE Application Programming  M. Geiger & P. Li 
Spring 2016  Lecture 30 & 31: Key Questions 
 

 8 
 

8. Write each of the following functions: 
a. Adding an item to a sorted linked list 

• Use addNode() as a starting point 
• Instead of adding node at beginning, find appropriate place in list and then add 
• Function should return pointer to start of list after it has been modified 

 
LLnode *addSortedNode(LLnode *list, int v) { 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
} 



EECE.2160: ECE Application Programming  M. Geiger & P. Li 
Spring 2016  Lecture 30 & 31: Key Questions 
 

 9 
 

b. Finding an item in a sorted linked list 
• Use findNode() as starting point—should perform same operation, but more efficiently 
• Function should return pointer to node if found 
• Return NULL otherwise 

 
LLnode *findSortedNode(LLnode *list, int v) { 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
} 
 
  


