EECE.2160: ECE Application Programming

 Spring 2016Lecture 29: Key Questions

April 13, 2016

1. (Review) Explain the dynamic allocation functions malloc (), calloc (), and realloc().
16.216: ECE Application Programming Spring 2016
M. Geiger \& P. Li

Lecture 29: Key Questions
2. Explain how free() is used to deallocate memory.
3. Example: What does the following program print?

```
void main() {
    int *arr;
    int n, i;
    n = 7;
    arr = (int *)calloc(n, sizeof(int));
    for (i = 0; i < n; i++)
        printf("%d ", arr[i]);
    printf("\n");
    n = 3;
    arr = (int *)realloc(arr, n * sizeof(int));
    for (i = 0; i < n; i++) {
        arr[i] = i * i;
        printf("%d ", arr[i]);
    }
    n = 6;
    arr = (int *)realloc(arr, n * sizeof(int));
    for (i = 0; i < n; i++) {
        arr[i] = 10 - i;
        printf("%d ", arr[i]);
    }
    free(arr);
}
```

16.216: ECE Application Programming Spring 2016
M. Geiger \& P. Li Lecture 29: Key Questions
4. What are the common pitfalls of dynamic memory allocation?
5. Explain how to use dynamic memory allocation with strings.
6. Explain how to use dynamic memory allocation with two-dimensional arrays.
7. Example: Write each of the following functions:
a. char *readLine () : Read a line of data from the standard input, store that data in a dynamically allocated string, and return the string (as a char *)
Hint: Read the data one character at a time and repeatedly reallocate space in string
b. int **make2DArray (int total, int $n R$): Given the total number of values and number of rows to be stored in a two-dimensional array, determine the appropriate number of columns, allocate the array, and return its starting address
Note: if $\mathbf{n R}$ does not divide evenly into total, round up. In other words, an array with 30 values and 4 rows should have 8 columns, even though $30 / 4=7.5$

