
 1

16.216: ECE Application Programming
Spring 2015

Exam 2 Solution

1. (20 points, 5 points per part) Multiple choice
For each of the multiple choice questions below, clearly indicate your response by circling or
underlining the one choice you think best answers the question.

a. How many iterations does the for loop below execute?

for (i = 40; i >= 0; i -= 5) Values of i: 40, 35, 30, 25,
 printf("%d ", i); 20, 15, 10, 5, 0, -5
 (i changes to -5 at the end

i. 1 of the last loop iteration,
making the loop condition

ii. 5 false and preventing a tenth
iteration)

iii. 8

iv. 9

v. 40

b. Which of the following declarations creates an array of 5 integers?

a. int arr[] = {1, 3, 5, 7, 9}; Contains the 5 integers given

b. int arr[] = {5}; Contains only one value, 5

c. int arr[5] = {1, 3, 5}; Contains {1, 3, 5, 0, 0}

d. int arr[5] = {0}; Contains {0, 0, 0, 0, 0}

i. Only A

ii. Only B

iii. A and C

iv. A, C, and D

v. B, C, and D

 2

1 (continued)
c. Which of the following choices accurately describes the contents of a two-dimensional array

declared using the following statement:
int list[5][10];

i. The array list contains a total of 15 integers.

ii. The array list contains a total of 50 integers, organized as 10 rows and 5 columns.

iii. The array list contains a total of 50 integers, organized as 5 rows and 10 columns.

iv. The array list contains two integers—5 and 10.

v. None of the above.

d. Which of the following statements accurately reflect your opinion(s)? Circle all that apply
(but please don’t waste too much time on this “question”)!

i. “I think the most recent programming assignments are still pretty easy.”

ii. “I think the programming assignments have gotten to be too difficult.”

iii. “I think the programming assignments have gotten harder, but are still fair.”

iv. “Is the semester over yet?”

All of the above are “correct”

 3

2. (40 points) Arrays
For each short program shown below, list the output exactly as it will appear on the screen. Be
sure to clearly indicate spaces between characters when necessary.
You may use the available space to show your work as well as the output; just be sure to clearly
mark where you show the output so that I can easily recognize your final answer.

a. (12 points)
int main() {
 int i;
 int arr[8] = {1, 29, 65, 3, 15, 9};

 for (i = 0; i < 8; i += 2) Prints elements 0 & 1,
 printf("%d %d\n", arr[i], arr[i+1]); then 2 & 3, 4 & 5,
 and 6 & 7

 for (i = 7; i > 0; i /= 2) i starts at 7, then
 printf("%d\n", arr[i] + arr[i-1]); goes to:
 7/2 = 3
 return 0; 3/2 = 1
} 1/2 = 0 (loop ends)
 So, this loop prints
 the sum of elements
 7 & 6, 3 & 2, and
 1 & 0

OUTPUT:

1 29

65 3

15 9

0 0

0

68

30

 4

2 (continued)
b. (14 points)
int main() {
 int i, j;
 int tab[2][5];

 for (j = 0; j < 5; j++) { Assigns value to each element
 for (i = 0; i < 2; i++) { and prints array column by
 tab[i][j] = i + (j * 2); column, not row by row.
 printf("%d ", tab[i][j]); Array contents (by row):
 } 0 2 4 6 8
 printf("\n"); 1 3 5 7 9
 }

 for (i = 0; i < 10; i++) Row/col numbers as follows:
 printf("%d ", tab[i%2][i/2]); i = 0 à tab[0][0]
 i = 1 à tab[1][0]
 return 0; i = 2 à tab[0][1]
} i = 3 à tab[1][1]
 i = 4 à tab[0][2]
 i = 5 à tab[1][2]
 i = 6 à tab[0][3]
 i = 7 à tab[1][3]
 i = 8 à tab[0][4]
 i = 9 à tab[1][4]

OUTPUT:

0 1
2 3
4 5
6 7
8 9
0 1 2 3 4 5 6 7 8 9

 5

2 (continued)
c. (14 points) The original exam had an extremely unfortunate error: I didn’t include the

definition of the function f(), which made the problem impossible to complete.
void f(double arr[], int n1, int n2) {
 int i;

 for (i = n1; i < n2; i++) Copies values from one array
 arr[n2 - 1 - i] = arr[i]; position to another—see below.
} Note that function may copy value
 it wrote in earlier iteration,
 as shown in examples

int main() {
 double list[] = {1.23, 4.56, 7.89, 10.11, 12.13, 13.14};
 int i;

 f(list, 0, 4); Loop in f() does following:
 for (i = 0; i < 6; i++) arr[3] = arr[0] = 1.23
 printf("%.2lf ", list[i]); arr[2] = arr[1] = 4.56
 printf("\n"); arr[1] = arr[2] = 4.56
 arr[0] = arr[3] = 1.23

 f(list, 1, 3); Loop in f() does following:
 for (i = 0; i < 6; i++) arr[1] = arr[1] = 4.56
 printf("%.2lf ", list[i]); arr[0] = arr[2] = 4.56
 printf("\n");

 f(list, 4, 6); Loop in f() does following:
 for (i = 0; i < 6; i++) arr[1] = arr[4] = 12.13
 printf("%.2lf ", list[i]); arr[0] = arr[5] = 13.14
 printf("\n");
}

OUTPUT:
1.23 4.56 4.56 1.23 12.13 13.14
4.56 4.56 4.56 1.23 12.13 13.14
13.14 12.13 4.56 1.23 12.13 13.14

 6

3. (40 points, 20 per part) Functions
For each part of this problem, you are given a short program to complete. CHOOSE ANY TWO
OF THE THREE PARTS and fill in the spaces provided with appropriate code. You may
complete all three parts for up to 10 points of extra credit, but must clearly indicate which
part is the extra one—I will assume it is part (c) if you mark none of them.

Remember, you must write all code required to make each function work as described—do not
assume you can simply fill in the blank lines and get full credit. Also, remember that each
example provided is only applicable in one specific case—it does not cover all possible results
of using that function.

a. double approxLog(double x, int n);

This function should calculate the following series approximation for the value log(1-x), which
is valid if |x| < 1:

 log(1− x) ≈ − xk

kk=1

n

∑ ≈ − x + x
2

2
+
x3

3
+!+

xn

n
$

%
&

'

(
)

The function takes two arguments—the values of x and n, as shown above—and should return
the approximate value calculated. Assume n is at least 1. For example, if x = 5 and n = 3, the
function should return: -(5 + 52/2 + 53/3) = -(5 + 12.5 + 41.6667) = -59.1667

Students were responsible for boldfaced, underlined, italicized code

double approxLog(double x, double n) {
 int i; // Loop index
 double tot; // Running total for approximation
 double pow; // x to the power of i

 // Initialize variables as needed
 tot = x;
 pow = x;

 // Loop to calculate series approximation

 for (i = 2; i <= n; i++) {
 pow *= x;
 tot += pow/i;
 }

 // Return result
 return –tot;
}

 7

3 (continued)
b. void reduceFraction(int num, int den, int *rNum, int *rDen);

This function takes a fraction represented by numerator num and denominator den, calculates
the greatest common divisor (GCD) of those numbers to reduce the fraction, and stores the
reduced numerator and denominator in integers pointed to by rNum and rDen. For example,
calling reduceFraction(15, 60, &r, &d) would reduce the fraction 15/60 to 1/4,
storing 1 in r and 4 in d. Assume the denominator is always non-zero.

The algorithm for finding the GCD of two numbers, x and y, is as follows:

1. If y is 0, x is the GCD.
2. Otherwise, calculate r, the remainder of x / y.

3. Let x = y, and y = r.

• So, x holds the “old” value of y, and the new value of y is the remainder from Step 2.

4. Return to Step 1.

void reduceFraction(int num, int den, int *rNum, int *rDen) {
 int gcd; // Greatest common divisor
 int rem; // Remainder
 int temp; // Temporary value

 // Initialize variables—let "gcd" start as denominator and
 // "temp" start as numerator
 gcd = den;
 temp = num;

 // Loop to calculate greatest common divisor of gcd and temp,
 // using steps 1-4 described above (gcd à "x", temp à "y")

 while (temp != 0) {
 rem = gcd % temp;
 gcd = temp;
 temp = rem;
 }

 // Reduce each term of fraction and store results in variables
 // to hold reduced numerator & denominator
 *rNum = num / gcd;
 *rDen = den / gcd;
}

 8

3 (continued)
c. void selectionSort(int arr[], int n);

Complete this function to implement a simple selection sorting algorithm that will sort the array
arr[], which holds n values, from lowest to highest. The algorithm works as follows:

• The outer loop starts at the first array element and goes up to the second-to-last element.
• The inner loop finds the lowest value left between position i and the end of the array and

swaps that value with whatever’s in position i.

For example, consider the array {9, 5, 1, 3}:
• When i = 0: 1 is minimum value in positions 0-3, and it’s swapped with 9: {1, 5, 9, 3}
• When i = 1: 3 is minimum value in positions 1-3, and it’s swapped with 5: {1, 3, 9, 5}
• When i = 2: 5 is minimum value in positions 2-3, and it’s swapped with 9: {1, 3, 5, 9}

void selectionSort(int arr[], int n) {
 int i,j; // Loop index variables
 int iMin; // Index--not value--of current minimum
 int temp; // Temp value to swap elements

 // Go through first n-1 elements of array

 for (i = 0; i < n-1; i++) {

 // Find minimum value between positions i and n-1
 // Start by assuming minimum is in position i, then test
 // all positions after that
 iMin = i;

 for (j = i+1; j < n; j++) {

 // New minimum found--store its index

 if (arr[j] < arr[iMin]) {
 iMin = j;
 }
 }

 // If position i isn't already min, swap min value with
 // value in position i

 if (iMin != i) {
 temp = arr[iMin];
 arr[iMin] = arr[i];
 arr[i] = temp;
 }
 }
}

