

EECE.2160: ECE Application Programming
Fall 2018

Exam 3 Solution

1. (32 points) Structures
a. (12 points) Show the output of the short program below exactly as it will appear on the

screen. Be sure to clearly indicate spaces between characters when necessary.
int main() {
 Elem arr[9];

int i = 0;
setElem(&arr[0], 'S', 4); arr[0] = {'S', 4}
setElem(&arr[2], 'l', arr[0].n + 1); arr[2] = {'l', 5}
setElem(&arr[3], 'n', 5); arr[3] = {'n', 5}
setElem(&arr[4], 'o', -2); arr[4] = {'o', -2}
setElem(&arr[6], 't', -5); arr[6] = {'t', -5}
setElem(&arr[7], 'u', -1); arr[7] = {'u', -1}
setElem(&arr[8], '\n', 1); arr[8] = {'\n', 1}

 arr[1] = arr[0]; arr[1] = {'S', 4}

 arr[1].c = 'S'; Here’s the stupid typo I mentioned at
 the exam—it should be arr[1].c = 'i'.
 As is, this statement does nothing.

arr[5] = arr[4]; arr[5] = {'o', -2}

 while (i < 9) {
 printf("%c", arr[i].c);
 i = i + arr[i].n;
 }
 return 0;
}

Solution: The table below shows how the while loop generates output:
Output
(arr[i].c)

Next i value
(i + arr[i].n)

 Output
(arr[i].c)

Next i value
(i + arr[i].n)

'S' 0 + 4 = 4 'S' 1 + 4 = 5

'o' 4 + -2 = 2 'o' 5 + -2 = 3

'l' 2 + 5 = 7 'n' 3 + 5 = 8

'u' 7 + -1 = 6 '\n' 8 + 1 = 9

Loop ends 't' 6 + -5 = 1

So, the final output is: SolutSon (yes, it should be "Solution"—stupid typo)

 2

The image shown above can be found at: https://2012books.lardbucket.org/books/beginning-algebra/s06-01-rectangular-coordinate-system.html

1 (continued)
b. (8 points) Complete the function below (the Point structure is defined on the extra sheet):
double dist(Point *p1, Point *p2);

This function takes pointers to two Point structures and finds the distance between them. The
easiest way to find this distance is to treat the line connecting the points as the hypotenuse of a
right triangle and use the Pythagorean theorem: given a right triangle with sides a and b and
hypotenuse c, a2 + b2 = c2.

For example, the picture to the right shows two points
that could be represented by Point structures—say,

Point v1 = {-1, 2};

Point v2 = {3, 5};

If you call the function: dist(&v1, &v2), the
function will return 5, since 32 + 42 = 52.

Given the relative simplicity of this function, you
must declare your own variables (if necessary) when
writing your solution below. You do not need to fill
the available space—the function doesn’t strictly require a lot of code. However, I’ll accept any
correct solution, regardless of how efficient it is.
Your solution can use the square root function from the <math.h> library, which simply
returns the square root of its input argument as a double. For example, sqrt(81) returns 9.0.

double dist(Point *p1, Point *p2) {
 double xdiff = p1->x – p2->x;
 double ydiff = p1->y – p2->y;
 return sqrt(xdiff * xdiff + ydiff * ydiff);
}

A couple of quick notes on the solution, based on questions I got during the exam:

• What I’m calling “xdiff” is essentially “b” in the figure above, while “ydiff” is “a”.

• A few people asked about using the absolute value function. However, since you’re
squaring the differences between the x-coordinates and y-coordinates, it really doesn’t
matter if that value is positive or negative.

• A couple of people also asked about using the power function (pow(x, y) returns xy). It’s
generally more time-consuming to call that function than it is to simply multiply a
number by itself if the exponent (2, in this case) is small.

 3

1 (continued)
c. (12 points) Complete the function below (the Quadrilateral structure is defined on the

extra sheet): int quadType(Quadrilateral *qp);

This function takes one argument, a pointer to a Quadrilateral structure, and determines if
the structure represents a rhombus (all 4 sides are of equal length), a parallelogram (all 4 sides
are not equal, but opposite pairs of sides are equal), or neither of those two shapes.
The function returns 2 if the structure represents a rhombus, 1 if it represents a parallelogram,
and 0 otherwise.
Your solution should use the dist() function defined in Question 1b. You do not need to write
a correct solution to Question 1b to solve this problem—you simply need to call dist()
properly in your solution to this function.

int quadType(Quadrilateral *qp) {
 double s1, s2, s3, s4; // Side lengths for quadrilateral

 // Calculate the lengths of all 4 quadrilateral sides
 s1 = dist(&qp->vert[0], &qp->vert[1]); It doesn’t matter
 s2 = dist(&qp->vert[1], &qp->vert[2]); which order you use
 s3 = dist(&qp->vert[2], &qp->vert[3]); the points, as long
 s4 = dist(&qp->vert[3], &qp->vert[0]); as you always use

consecutive points,
as described in

 the extra handout.

 // If all 4 lengths match, the quadrilateral is a rhombus

if (s1 == s2 && s2 == s3 && s3 == s4)
 return 2;

 // If all 4 lengths don’t match, but opposite sides match,

// the quadrilateral is a parallelogram
 else if (s1 == s3 && s2 == s4)
 return 1;

 // Otherwise, it's neither
 else
 return 0;
}

 4

2. (28 points) File I/O
a. (20 points) Complete the function described below:
int maxFirst(char *infile, char *outfile);

This function works with two text files—one input, one output. The string arguments infile
and outfile hold the names of these files.

The input file contains an even number of integers, which the function reads two at a time. After
reading two values, the function prints those values to the output file, always printing the larger
of the two values first. The function returns the total number of values read from the input file.
See the extra sheet for test cases that show sample file contents and function return values.

Assume the function always opens files successfully—do not check for any NULL pointers.

int maxFirst(char *infile, char *outfile) {
 FILE *infp, *outfp; // File ptrs for input, output files
 int v1, v2; // Input values
 int n = 0; // Total # of inputs

 // Open input and output files
 infp = fopen(infile, "r");
 outfp = fopen(outfile, "w");

 // Read input 2 values at a time until you reach end of file
 while (fscanf(infp, "%d %d", &v1, &v2) != EOF) {

 // Print each pair of integers to output file with larger
 // value printed first, then update count for # of inputs
 if (v1 > v2)
 fprintf(outfp, "%d %d\n", v1, v2);
 else
 fprintf(outfp, "%d %d\n", v2, v1);

 n += 2;
 }

 // Close files
 fclose(infp);
 fclose(outfp);

 // Return # of input values read
 return n;
}

 5

2 (continued)
b. (4 points) You have a program that contains an array declared as:

 double list[50];

Which of the following code snippets would correctly read a group of up to 50 values from a
binary file and store them in this array? This question has exactly one correct answer.

i. FILE *fp = fopen("input.bin", "rb");
fscanf(fp, "%lf", list);

ii. FILE *fp = fopen("input.bin", "rb");
fread(list, sizeof(double), 1, fp);

iii. FILE *fp = fopen("input.bin", "rb");
fread(list, sizeof(double), 50, fp);

iv. All of the above

c. (4 points) What is the appropriate way to test if your program has reached the end of a binary

input file accessible through the variable FILE *fpIn? This question has exactly one
correct answer.

i. Call fread() until the return value of that function is 0, since reaching the end of the

file is the only reason fread() would return 0.

ii. Call feof(fpIn) before reading any data from the file.

iii. Call feof(fpIn) after attempting to read data from the file.

iv. Call fscanf() until that function returns EOF.

v. What’s a binary file?

 6

3. (18 points) Character and line input
a. (14 points) Show the output of the short program below exactly as it will appear on the

screen. The line below shows the prompt your program prints (in bold) and the input the user
types (which is underlined):

Enter text: Today is December 17th.

You may use the available space to show your work as well as the output; just be sure to clearly
mark where you show the output so I can easily recognize your final answer.

int e3_3a() {
 int n = 0;
 int i;
 char ch;
 char arr[50];
 printf("Enter text: ");
 while ((ch = getchar()) != 'D') { Reads all characters
 arr[n] = ch; before 'D' in December,
 ++n; storing each in arr[]
 }
 ungetc(ch, stdin); Places 'D' back in input

 for (i = n - 1; i >= 0; i--) Prints characters from
 printf("%c", arr[i]); arr[] in reverse order
 printf("\n");

 // Remember, isdigit(ch) returns true if ch is a digit
 while (!isdigit(ch = fgetc(stdin))) { Reads up to 1st digit,
 printf("%c", ch); starting with 'D',
 } and prints each char
 before first digit

 printf("\n%c\n", ch); Prints character that
 forced prior loop to
 end ('1')
 return 0;
}

OUTPUT:
 si yadoT There’s a space before 's'
December There’s a space after 'r'
1

 7

3 (continued)
b. (4 points) Your program contains the following short piece of code:

char arr[10];
printf("Enter input line: ");
fgets(arr, 10, stdin);
printf("%s", arr);

The line below shows the prompt your program prints (in bold) and the user input (which is
underlined). Assume the user presses Enter at the end of the line, thus putting a newline character
at the end of the input:

Enter input line: The cow jumped over the moon.

What will the program print? This question has exactly one correct answer.

i. The

ii. The cow

iii. The cow j

iv. The cow ju

v. The cow jumped over the moon.

 8

4. (22 points) Bitwise operators
a. (14 points) Show the output of the short program below exactly as it will appear on the

screen. Be sure to clearly indicate spaces between characters when necessary.
You may use the available space to show your work as well as the output; just be sure to clearly
mark where you show the output so I can easily recognize your final answer.

int main() {
 unsigned int q = 0xDEC17;
 unsigned int v1, v2, v3, v4;
 v1 = q | 0x1953C2;
 = 0xDEC17 | 0x1953C2 = 0000 1101 1110 1100 0001 0111
 OR 0001 1001 0101 0011 1100 0010
 0001 1101 1111 1111 1101 0111
 = 0x1DFFD7

 v2 = v1 ^ 0x0F0F0F0F;
 = 0x1DFFD7 ^ 0x0F0F0F0F
 = 0000 0000 0001 1101 1111 1111 1101 0111
 XOR 0000 1111 0000 1111 0000 1111 0000 1111
 0000 1111 0001 0010 1111 0000 1101 1000
 = 0x0F12F0D8

 v3 = 0xDEADBEEF & ~v1;
 = 0xDEADBEEF & ~(0x1DFFD7) = 0xDEADBEEF & 0xFFE20028
 = 1101 1110 1010 1101 1011 1110 1110 1111
 AND 1111 1111 1110 0010 0000 0000 0010 1000
 1101 1110 1010 0000 0000 0000 0010 1000
 = 0xDEA00028

 v4 = 0xEECE2160 | (v1 << 6);
 = 0xEECE2160 | (0x1DFFD7 << 6)

 0x1DFFD7 << 6 = 0000 0000 0001 1101 1111 1111 1101 0111 << 6
 = 0000 0111 0111 1111 1111 0101 1100 0000

 So, v4 = 1101 1101 1100 1101 0010 0001 0110 0000
 OR 0000 0111 0111 1111 1111 0101 1100 0000
 1101 1111 1111 1111 1111 0101 1110 0000
 = 0xEFFFF5E0

 printf("%.6x\n", q); Print q with at least 6 digits
 printf("%#.7x\n", v1); Print v1 with at least 7 digits
 and a leading 0x
 printf("%x\n", v2); Print v2 with no leading 0x
 printf("%#x\n", v3); Print v3 with a leading 0x
 printf("%x\n", v4);
 return 0;
}

 9

OUTPUT for Question 4a
0dec17
0x01dffd7
f12f0d8
0xdea00028
effff5e0

 10

4 (continued)

b. (4 points) Assume unsigned int x = 0xABC123FF.

Which of the following statements will set x = 0xABC12300? This question has at least one
correct answer, but may have more than one correct answer! Circle ALL choices that
correctly answer the question.

i. x = x & 0xFFFFFF00;

ii. x = x | 0xFFFFFF00;

iii. x = x ^ 0x000000FF;

iv. x = ~x;

v. x = (x >> 8) << 8;

c. (4 points) Circle one (or more) of the choices below that you feel best “answers” this

“question,” which has “nothing” to do with “bitwise operators.”

i. “Thanks for the free points.”

ii. “This is the best final exam I’ve taken today.”

iii. “At least we’re not here at 8:00 in the morning.”

iv. “I forgot to circle the number of the section I’m enrolled in—I’ll go back to the front

page of the exam and do that now.”

v. None of the above.

All of the above are “correct.”

 11

5. (10 points) EXTRA CREDIT
Everyone may attempt this problem, even if you have not at least partially solved the rest of
the exam. Remember, you can earn partial credit for a partial solution to this problem.
Show the output of the short program below exactly as it will appear on the screen. Be sure to
clearly indicate spaces between characters when necessary. (Hint: The final output is easily
readable, but you must show at least some work to get credit.)

The contents of the three input files, as well as more hints, are on the extra handout.

int main() {
 FILE *fileA, *fileB, *fileC, *fp;
 char ch;
 char buf[50];
 int i, j, n;

 fileA = fopen("fileA.txt", "r");
 fileB = fopen("fileB.txt", "r");
 fileC = fopen("fileC.txt", "r");

 j = 0;
 while (fscanf(fileC, "%c%d", &ch, &n) != EOF) {
 if (ch == 'A')
 fp = fileA;
 else
 fp = fileB;

 for (i = 0; i < n; i++)
 buf[j++] = fgetc(fp);
 }
 buf[j] = '\0';

 for (i = 0; i < j; i++) {
 if (isdigit(buf[i]))
 buf[i] = 'a' + (buf[i] - 48);
 else if (tolower(buf[i]) == 'x')
 buf[i] = ' ';
 }

 printf("%s\n", buf);

 fclose(fileA);
 fclose(fileB);
 fclose(fileC);
 return 0;
}

 12

Question 5 Solution: First, the while loop reads data from three text files:

• Each iteration, the loop reads one character and one integer from fileC.txt, storing
those values in the variables ch and n, respectively. The loop repeats until the end of
fileC.txt is reached.

• The body of the loop uses ch and n as follows:

o ch determines if your program reads fileA.txt or fileB.txt—based on
the letter it reads, it assigns the file pointer for that file to the variable fp.

o n determines the number of characters read into the array buf[].

• As noted in the extra handout, the file contents are as follows:

Name Contents
FileA.txt Yrx0w4rX2or

FileB.txt ouns8sXr42t!

FileC.txt A1B2A3B2A4B3A2B1A1B4

• So, here’s how the program handles those files and fills buf[]:

Input from
FileC.txt

FileA or
FileB?

Chars
read

Current
state of buf[]

A1 FileA Y Y
B2 FileB ou You
A3 FileA rx0 Yourx0
B2 FileB ns Yourx0ns

A4 FileA w4rX Yourx0nsw4rX
B3 FileB 8sX Yourx0nsw4rX8sX
A2 FileA 2o Yourx0nsw4rX8sX2o
B1 FileB r Yourx0nsw4rX8sX2or
A1 FileA r Yourx0nsw4rX8sX2orr

B4 FileB 42t! Yourx0nsw4rX8sX2orr42t!

The for loop then goes through the array buf[] and modifies some of the characters:

• If buf[i] is a digit, it’s changed to the actual integer it represents (buf[i] – 48
does that, since 48 is the ASCII value of '0') and then added to 'a'.

o The array contains one '0', which changes to 'a', two '2's, which change to
'c', two '4's, which change to 'e', and one '8', which changes to 'i'.

• If buf[i] is 'X' or 'x', it’s changed to a space ' '.

That loop therefore changes buf[] as shown below, with the string on the right representing the
final output of the program:
 Yourx0nsw4rX8sX2orr42t! à Your answer is correct!

