
EECE.2160: ECE Application Programming
Fall 2018

Exam 2 Solution
1. (35 points) Functions

a. (15 points) Show the output of the short program below exactly as it will appear on the
screen. Be sure to clearly indicate spaces between characters when necessary.

You may use the available space to show your work as well as the output; just be sure to clearly
mark where you show the output so I can easily recognize your final answer.

int f1(int *arg1) { Since arg1 is passed by address,
 (*arg1)--; this function decrements whatever
 return (*arg1) * 3; arg1 points to outside the
} function, & returns that value * 3

int f2(int arg2) { Since arg2 is passed by value,
 ++arg2; incrementing it in the function
 return arg2 + 10; has no effect outside f2(), but
} the incremented value is used to
 calculate the return value

int main() {
 int a, b, c, d;
 a = 5;
 b = f1(&a); a = a – 1 = 4
 b = a * 3 = 12

 c = f2(a); c = (a + 1) + 10 = 15

 d = f1(&b); b = b – 1 = 11
 d = d * 3 = 33

 a = f2(f1(&c)); Call to f1 is evaluated first:
 c = c – 1 = 14
 Function returns 14 * 3 = 42
 f1() return value passed to f2():
 a = (42 + 1) + 10 = 53

 printf("%d %d %d %d\n", a, b, c, d);
 return 0;
}

OUTPUT:
53 11 14 33

 2

1 (continued)
b. (20 points) Complete the function described below:
double approx(double x, int n);

This function should calculate the following series approximation for the value 1 / (1-x), which is
valid if the absolute value of x is less than 1:

1
1 − 𝑥

≈ 𝑥% = 𝟏 + 𝒙 + 𝒙𝟐
+

%,-

+ 𝒙𝟑 + ⋯+ 𝒙𝒏

The function takes two arguments—the values of x and n, as shown above—and should return
the approximate value calculated. For example, if x = 0.5 and n = 3, the function should return:

1 + 0.5 + 0.52 + 0.53 = 1 + 0.5 + 0.25 + 0.125 = 1.875

double approx(double x, int n) {
 double total; // Running total for approximation
 double x_i; // x to the power of i
 int i; // Loop index

 // Initialize variables as needed
 total = 0;
 x_i = 1;

 // Loop to calculate series approximation as described above
 for (i = 0; i <= n; i++) {
 total = total + x_i;
 x_i = x_i * x; // After 1 iteration, x_i = x
 // After 2 iterations, x_i = x2
 // After 3 iterations, x_i = x3
 // … etc.
 }

 // Return result
 return total;
}

 3

2. (41 points) Arrays
a. (15 points) Show the output of the short program below exactly as it will appear on the

screen. Be sure to clearly indicate spaces between characters when necessary.
You may use the available space to show your work as well as the output; just be sure to clearly
mark where you show the output so I can easily recognize your final answer.

int main() {
 int i, k;
 int vals[8] = {21, 60, 1, 6, -5, 7};
 vals actually holds: {21, 60, 1, 6, -5, 7, 0, 0}

 int inds[8] = {3, 1, -1, 6, 8, 0, 10, 5};

 for (i = 6; i >= 0; i -= 2) { Loop changes even-
 vals[i] += inds[i]; numbered positions
 printf("%d %d\n", vals[i], vals[i+1]); in vals; prints
 printf("%d %d\n", inds[i], inds[i+1]); consecutive values
 } in each array

 for (i = 0; i < 8; i++) { Loop uses inds[i]
 k = inds[i]; as index into vals
 if (k >= 0 && k < 8) if valid (between
 printf("%d\n", vals[k]); 0 and 7) and prints
 else vals[inds[i]]
 printf("%d\n", k); Otherwise, loop
 } prints inds[i]

 return 0;
}

OUTPUT
10 0
10 5
3 7
8 0
0 6
-1 6
24 60
3 1
6
60
-1
10
8
24
10
7

 4

2 (continued)
b. (6 points) You are given a two dimensional array declared as: double arr[5][10];

You also have two int variables, i and j, and two variables of type double, sum and avg.

Which of the following short code sequences correctly calculate the average of all values in this
array and stores it in the variable avg? This question has at least one correct answer, but may
have more than one correct answer! Circle ALL choices that correctly answer the question.

i. sum = 0;
for (i = 0; i < 5; i++) {
 for (j = 0; j < 10; j++) {
 sum += arr[i][j];
 }
 avg += sum / 10;
}

ii. sum = 0;
for (i = 4; i >= 0; i--) {
 for (j = 9; j >= 0; j--) {
 sum += arr[i][j];
 }
}
avg = sum / 50;

iii. sum = 0;
for (i = 0; i < 10; i++) {
 for (j = 0; j < 5; j++) {
 sum = sum + arr[j][i];
 }
}
avg = sum / 50;

iv. sum = 0;
for (i = 0; i < 5; i++) {
 for (j = 0; j < 10; j++) {
 sum = arr[i][j];
 }
}
avg = sum / 50;

 5

2 (continued)
c. (20 points) Complete the function described below:
int findMode(int arr[], int n);

This function finds and returns the mode—the value that occurs most often—in an integer array
arr[] of length n. For example, if arr = {1, 2, 3, 3, 4, 4, 4}, the mode is 4; if
arr = {1, 6, 2, 1, 6}, the mode is 6.

To find the mode, the function counts the number of occurrences of each value in arr[], and
then determines the maximum number of occurrences, which in turn determines the mode. You
may assume arr[] contains only values between 1 and 10, so the numCount[] array declared
in the function can be used to count the occurrences of all possible values.

Solution notes:

• Since we know all values in arr[] are between 1 and 10, numCount[0] will count the
number of 1s, numCount[1] counts the number of 2s, and so on, up to numCount[9],
which counts the number of 10s.

• Your mode variable will essentially be the index (+1) of the position in numCount that
has the highest value after the occurrence-counting loop.

int findMode(int arr[], int n) {
 int numCount[10]; // Counts number occurrences in arr
 int i; // Loop index
 int mode; // Mode

 // Initialize variables as needed (may need loop)
 for (i = 0; i < 10; i++)
 numCount[i] = 0;
 mode = 1;

 // Use loop to count # of occurrences of each value in arr
 for (i = 0; i < n; i++) {
 numCount[arr[i] – 1]++;
 }

 // Loop to determine mode--which number occurred most often
 for (i = 1; i < 10; i++) {
 if (numCount[i] > numCount[mode-1])
 mode = i + 1;
 }

 return mode;
}

 6

3. (24 points, 6 points each) Strings
a. Given strings s1 = "Exam 1", s2 = "Exam 2", and s3 = "Exactly", which of

the following calls to string comparison functions will return the value 0? This question has
at least one correct answer, but may have more than one correct answer! Circle ALL
choices that correctly answer the question.

i. strcmp(s1, s2);

ii. strncmp(s1, s2, 5);

iii. strcmp(s1, s3);

iv. strncmp(s1, s3, 3);

b. Given the short code sequence below:

int i;
char str[20] = "x";
for (i = 0; i < 4; i++)
 strcat(str, "ox");
printf("Length of string = %d\n", strlen(str));

What will this program print? Choose only one answer.

i. Length of string = 1

ii. Length of string = 3

iii. Length of string = 5

iv. Length of string = 9

v. Length of string = 20

 7

3 (continued)
c. Given the code sequence below:

char s1[20];
char s2[20];
strcpy(s1, "Summer");
s1[1] = 'i';
strncpy(s2, s1, 4);
s2[3] = '\0';
printf("%s %s\n", s1, s2);

What will this program print? Choose only one answer.

i. Summer Simmer

ii. Simmer Simmer

iii. Summer Simm

iv. Simmer Simm

v. Simmer Sim

d. Which of the following statements accurately reflect your opinion(s)? Circle all that apply

(but please don’t waste too much time on this “question”)!

i. “I think the most recent programming assignments are still pretty easy.”

ii. “I think the programming assignments have gotten to be too difficult.”

iii. “I think the programming assignments have gotten harder, but are still fair.”

iv. “Is the semester over yet?”

All are “correct.”

 8

4. (10 points) EXTRA CREDIT
REMEMBER, YOU CANNOT EARN EXTRA CREDIT WITHOUT WRITING AT
LEAST PARTIAL SOLUTIONS FOR ALL OTHER PROBLEMS ON THE EXAM.
However, you can earn partial credit for a partial solution to this problem.

Write the function with the function prototype and description below:
void removeChar(char *str, char c);

This function should remove all occurrences of the character c from the string str. Remember
that, since the string is passed by address, changes made to str inside the function are seen
outside the function.
For example, if the string s1 = "This is a message" before each function call shown
below, then:

• After calling removeChar(s1, 'i') à s1 = "Ths s a message"
• After calling removeChar(s1, ' ') à s1 = "Thisisamessage"
• After calling removeChar(s1, 's') à s1 = "Thi i a meage"

Hint: to access part of a string (a substring) starting after the first character, use the address of the
desired starting character. For example, given the original s1 above, &s1[5] can be used to
access the substring "is a message". Using substrings with built-in string functions can
simplify your solution.

Use the space on the next page to write your solution to this function.

 9

4 (continued) SPACE TO SOLVE EXTRA CREDIT PROBLEM
void removeChar(char *str, char c)
{
 int i = 0; // Index variable

 // Loop to ensure all characters are covered
 while (i < strlen(str)) {

// If match is found, shift all characters that follow
// to the left by one position
// NOTE: This solution uses the strcat() function—if
// the character to be removed is overwritten with
// a null character, str[] essentially holds two
// strings--one before the removed character, and
// one after. strcat() combines the two,

 // overwriting the '\0' with the next character.
 if (str[i] == c) {
 str[i] = '\0';
 strcat(str, &str[i+1]);
 }

 // If there is no match, move onto the next character
 // NOTE: i should not be incremented first since,
 // doing so would lead to a character being skipped
 else
 i++;
 }
}

