
EECE.2160: ECE Application Programming
Fall 2018
Exam 2

November 5, 2018

Name: ___

Lecture time (circle 1): 8-8:50 (Sec. 201) 12-12:50 (Sec. 203) 1-1:50 (Sec. 202)

For this exam, you may use only one 8.5” x 11” double-sided page of notes. All electronic
devices (e.g., calculators, cell phones) are prohibited. Please turn off your cell phone ringer prior
to the start of the exam to avoid distracting other students.
The exam contains 3 sections for a total of 100 points, plus a 10 point extra credit question.
Please answer the questions in the spaces provided. If you need additional space, use the back of
the page on which the question is written and clearly indicate that you have done so.

Please read each question carefully before you answer. In particular, note that:

• Questions 1b and 2c require you to complete short functions. We have provided
comments to describe what each function should do and written some of the code.

o Note that each function contains both lines that are partially written (for example,
a printf() call missing the format string and expressions) and blank spaces in
which you must write additional code. You must write all code required to
make each function work as described—do not simply fill in the blank lines.

o Each test case is an example of how the program should behave in one specific
case—it does not cover all possible results of running that program.

o You can solve each of these questions using only the variables that have been
declared, but you may declare and use other variables if you want.

• Carefully read the multiple choice problems. Questions 2b and 3a may have more than
one correct answer, while questions 3b and 3c each have exactly one correct answer.

• You cannot earn any extra credit without partial solutions to all parts of Sections 1,
2, and 3. In other words, don’t try Question 4 until you’ve attempted every other question
on the exam—“finishing the exam” doesn’t have to include the extra credit problem!

You will have 50 minutes to complete this exam.

S1: Functions / 35
S2: Arrays / 41
S3: Strings / 24

TOTAL SCORE / 100
EXTRA CREDIT / 10

 2

1. (35 points) Functions
a. (15 points) Show the output of the short program below exactly as it will appear on the

screen. Be sure to clearly indicate spaces between characters when necessary.
You may use the available space to show your work as well as the output; just be sure to clearly
mark where you show the output so I can easily recognize your final answer.

int f1(int *arg1) {
 (*arg1)--;
 return (*arg1) * 3;
}

int f2(int arg2) {
 ++arg2;
 return arg2 + 10;
}

int main() {
 int a, b, c, d;
 a = 5;
 b = f1(&a);
 c = f2(a);
 d = f1(&b);
 a = f2(f1(&c));

 printf("%d %d %d %d\n", a, b, c, d);
 return 0;
}

 3

1 (continued)
b. (20 points) Complete the function described below:
double approx(double x, int n);

This function should calculate the following series approximation for the value 1 / (1-x), which is
valid if the absolute value of x is less than 1:

1
1 − 𝑥

≈ 𝑥% = 𝟏 + 𝒙 + 𝒙𝟐
+

%,-

+ 𝒙𝟑 + ⋯+ 𝒙𝒏

The function takes two arguments—the values of x and n, as shown above—and should return
the approximate value calculated. For example, if x = 0.5 and n = 3, the function should return:

1 + 0.5 + 0.52 + 0.53 = 1 + 0.5 + 0.25 + 0.125 = 1.875

double approx(double x, int n) {
 double total; // Running total for approximation
 double x_i; // x to the power of i
 int i; // Loop index

 // Initialize variables as needed

 // Loop to calculate series approximation as described above

 _____ (__) {

 }

 // Return result

 return _________________;
}

 4

2. (41 points) Arrays
a. (15 points) Show the output of the short program below exactly as it will appear on the

screen. Be sure to clearly indicate spaces between characters when necessary.
You may use the available space to show your work as well as the output; just be sure to clearly
mark where you show the output so I can easily recognize your final answer.

int main() {
 int i, k;
 int vals[8] = {21, 60, 1, 6, -5, 7};
 int inds[8] = {3, 1, -1, 6, 8, 0, 10, 5};

 for (i = 6; i >= 0; i -= 2) {
 vals[i] += inds[i];
 printf("%d %d\n", vals[i], vals[i+1]);
 printf("%d %d\n", inds[i], inds[i+1]);
 }

 for (i = 0; i < 8; i++) {
 k = inds[i];
 if (k >= 0 && k < 8)
 printf("%d\n", vals[k]);
 else
 printf("%d\n", k);
 }

 return 0;
}

 5

2 (continued)
b. (6 points) You are given a two dimensional array declared as: double arr[5][10];

You also have two int variables, i and j, and two variables of type double, sum and avg.

Which of the following short code sequences correctly calculate the average of all values in this
array and stores it in the variable avg? This question has at least one correct answer, but may
have more than one correct answer! Circle ALL choices that correctly answer the question.

i. sum = 0;
for (i = 0; i < 5; i++) {
 for (j = 0; j < 10; j++) {
 sum += arr[i][j];
 }
 avg += sum / 10;
}

ii. sum = 0;
for (i = 4; i >= 0; i--) {
 for (j = 9; j >= 0; j--) {
 sum += arr[i][j];
 }
}
avg = sum / 50;

iii. sum = 0;
for (i = 0; i < 10; i++) {
 for (j = 0; j < 5; j++) {
 sum = sum + arr[j][i];
 }
}
avg = sum / 50;

iv. sum = 0;
for (i = 0; i < 5; i++) {
 for (j = 0; j < 10; j++) {
 sum = arr[i][j];
 }
}
avg = sum / 50;

 6

2 (continued)
c. (20 points) Complete the function described below:
int findMode(int arr[], int n);

This function finds and returns the mode—the value that occurs most often—in an integer array
arr[] of length n. For example, if arr = {1, 2, 3, 3, 4, 4, 4}, the mode is 4; if
arr = {1, 6, 2, 1, 6}, the mode is 6.

To find the mode, the function counts the number of occurrences of each value in arr[], and
then determines the maximum number of occurrences, which in turn determines the mode. You
may assume arr[] contains only values between 1 and 10, so the numCount[] array declared
in the function can be used to count the occurrences of all possible values.

int findMode(int arr[], int n) {
 int numCount[10]; // Counts number occurrences in arr
 int i; // Loop index
 int mode; // Mode

 // Initialize variables as needed (may need loop)

 // Use loop to count # of occurrences of each value in arr

 _____ (__) {

 }

 // Loop to determine mode--which number occurred most often

 _____ (__) {

 }

 return mode;
}

 7

3. (24 points, 6 points each) Strings
a. Given strings s1 = "Exam 1", s2 = "Exam 2", and s3 = "Exactly", which of

the following calls to string comparison functions will return the value 0? This question has
at least one correct answer, but may have more than one correct answer! Circle ALL
choices that correctly answer the question.

i. strcmp(s1, s2);

ii. strncmp(s1, s2, 5);

iii. strcmp(s1, s3);

iv. strncmp(s1, s3, 3);

b. Given the short code sequence below:

int i;
char str[20] = "x";
for (i = 0; i < 4; i++)
 strcat(str, "ox");
printf("Length of string = %d\n", strlen(str));

What will this program print? Choose only one answer.

i. Length of string = 1

ii. Length of string = 3

iii. Length of string = 5

iv. Length of string = 9

v. Length of string = 20

 8

3 (continued)
c. Given the code sequence below:

char s1[20];
char s2[20];
strcpy(s1, "Summer");
s1[1] = 'i';
strncpy(s2, s1, 4);
s2[3] = '\0';
printf("%s %s\n", s1, s2);

What will this program print? Choose only one answer.

i. Summer Simmer

ii. Simmer Simmer

iii. Summer Simm

iv. Simmer Simm

v. Simmer Sim

d. Which of the following statements accurately reflect your opinion(s)? Circle all that apply

(but please don’t waste too much time on this “question”)!

i. “I think the most recent programming assignments are still pretty easy.”

ii. “I think the programming assignments have gotten to be too difficult.”

iii. “I think the programming assignments have gotten harder, but are still fair.”

iv. “Is the semester over yet?”

 9

4. (10 points) EXTRA CREDIT
REMEMBER, YOU CANNOT EARN EXTRA CREDIT WITHOUT WRITING AT
LEAST PARTIAL SOLUTIONS FOR ALL OTHER PROBLEMS ON THE EXAM.
However, you can earn partial credit for a partial solution to this problem.

Write the function with the function prototype and description below:
void removeChar(char *str, char c);

This function should remove all occurrences of the character c from the string str. Remember
that, since the string is passed by address, changes made to str inside the function are seen
outside the function.
For example, if the string s1 = "This is a message" before each function call shown
below, then:

• After calling removeChar(s1, 'i') à s1 = "Ths s a message"
• After calling removeChar(s1, ' ') à s1 = "Thisisamessage"
• After calling removeChar(s1, 's') à s1 = "Thi i a meage"

Hint: to access part of a string (a substring) starting after the first character, use the address of the
desired starting character. For example, given the original s1 above, &s1[5] can be used to
access the substring "is a message". Using substrings with built-in string functions can
simplify your solution.

Use the space on the next page to write your solution to this function.

 10

4 (continued) SPACE TO SOLVE EXTRA CREDIT PROBLEM
void removeChar(char *str, char c)
{

}

