
 1

EECE.2160: ECE Application Programming
Fall 2018

Exam 1 Solution

1. (46 points) C input/output; operators
a. (13 points) Show the output of the short program below exactly as it will appear on the

screen. Be sure to clearly leave spaces between characters when necessary.
You may use the available space to show your work as well as the output; just be sure to clearly
mark where you show the output so that I can easily recognize your final answer.

int main() {
 int in1;
 int in2 = 10;
 double d1 = 20.18;
 double d2;

 in1 = d1 + in2 % 4; in1 = 20.18 + 10 % 4
 = 20.18 + 2 = 22.18
 = 22 (truncated to int)

 d2 = d1 / 10; d2 = 20.18 / 10 = 2.018

 in2 = (in1 + 10) / (in1 - 10); in2 = (22 + 10) / (22 – 10)
 = 32 / 12 = 2.67 = 2
 (integer division)

 d1 = in2 + d1; d1 = 2 + 20.18 = 22.18

 printf("%d\n%d ", in1, in2);
 printf("%lf\n%.2lf", d1, d2);

 return 0;
}

OUTPUT:
22
2 22.180000
2.02

 2

1 (continued)
b. (13 points) For this program, assume the user inputs the line below. The digit '1' is the first

character the user types. Each space between numbers is a single space character (' ').

You must determine how scanf() handles this input and then print the appropriate results,
exactly as they would be shown on the screen. The program may not read all characters on the
input line, but scanf() will read something into all seven variables declared in the program.
There are no formatting errors in the input!

16.2 2 19 -5

int main () {
 int int1, int2;
 double d1, d2;
 char ch1, ch2, ch3, ch4;

scanf("%d%c %lf%c %d %c %lf %c",
 &int1, &ch1, &d1, &ch2,
 &int2, &ch3, &d2, &ch4);

 printf("%d %d\n", int1, int2);
 printf("%.2lf %.2lf\n", d1, d2);
 printf("%c%c%c%c\n", ch1, ch2, ch3, ch4);

 return 0;
}

SOLUTION:
This program reads its input as follows:

• int1 is the first integer value à int1 = 16
• ch1 is the first character after 16 à ch1 = '.'
• d1 holds the next whole number à d1 = 2
• ch2 is the first character after the 2 in "16.2" à ch2 = ' '
• int2 holds the next integer à int2 = 2
• ch3 is the first non-space character after 2 à ch3 = '1'
• d2 holds the next whole number à d2 = 9
• ch4 is the first non-space character after 19 à ch4 = '-'

OUTPUT: Note that both double-precision values are printed with a precision of 2.

16 2

2.00 9.00

. 1-

 3

1 (continued)
c. (20 points) Complete this program so that it prompts the user to enter four input values

representing a baseball player’s statistics—hits (H), walks (BB), total bases (TB), and at bats
(AB), then calculates and prints the following values, each on its own line:

• Batting average (AVG): the fraction of at bats in which the player gets a hit
• On-base percentage (OBP): the fraction of plate appearances (PA = AB + BB) in which

the player reaches base by getting either a walk or a hit.
• Slugging percentage (SLG): the ratio of total bases to at bats.
• OPS: the sum of OBP and SLG.

Print each value using 3 decimal places. One example is below, with user input underlined.
(Italic comments next to each line of output won’t be printed—they just explain the calculation)
Enter H / BB / TB / AB: 100 50 180 450
AVG: 0.222 (AVG = 100 / 450)
OBP: 0.300 (OBP = (100 + 50) / (450 + 50) = 150 / 500)
SLG: 0.400 (SLG = 180 / 450)
OPS: 0.700 (OPS = 0.300 + 0.400)

int main() {
 double H, BB, TB, AB, PA; // Stats described above

 // Prompt for and read hits, walks, total bases, at bats
 printf("Enter H / BB / TB / AB: ");

 scanf("%lf %lf %lf %lf", &H, &BB, &TB, &AB);

 // Calculate any necessary intermediate values
 PA = AB + BB;

 // Print AVG, OBP, SLG, and OPS
 printf("AVG: %.3lf\n", H / AB);
 printf("OBP: %.3lf\n", (H + BB) / PA);
 printf("SLG: %.3lf\n", TB / AB);
 printf("OPS: %.3lf\n", (H + BB) / PA + TB / AB);

 return 0;
}

 4

2. (34 points) Conditional statements
a. (14 points) For the short program shown below, the first line of output (the prompt "Enter

v1 and v2: ") and the user input (4 1) is listed at the bottom of the page.

Complete the rest of the output for this program, given those input values.
int main() {
 int v1, v2;
 printf("Enter v1 and v2: ");
 scanf("%d %d", &v1, &v2); v1 = 4, v2 = 1

 if (v1 > v2) Condition true (4 > 1),
 printf("%d > %d\n", v1, v2); so program prints:
 4 > 1

 if (v2 > 0) First condition true
 printf("%d positive\n", v2); (1 > 0), so program
 else if (v1 > 0) prints: 1 positive
 printf("%d positive\n", v1); Else if and else cases
 else ignored
 printf("Both negative\n");

 switch (v1) { Since v1 == 4, program
 case 2: case 4: prints: 4 1
 printf("%d %d\n", v1, v2); Since there is no break
 case 1: case 3: after the 1st printf(),
 printf("%d %d\n", v2, v1); program also prints:
 break; 1 4
 default:
 printf("None of the above\n");
 }

 return 0;
}

OUTPUT (the first line is given; write the remaining line(s)):
Enter v1 and v2: 4 1
4 > 1
1 positive
4 1
1 4

 5

2 (continued)
b. (20 points) Complete this program, which prompts for and reads one non-space character,

then tests that character to see if it is a letter, number, or neither. In each case, the program
reprints the character with an appropriate description, as shown in the tests below (user input
is underlined).

Enter character: E
E is a letter

Enter character: 6
6 is a number

Enter character: !
! is neither

Hints: You can compare a character variable to a character constant. For example, the condition
(ch < '?') is true for all characters with ASCII values less than '?'.

Your program should check for the valid range(s) for each type of character (uppercase and
lowercase letters are separate). ASCII values are usually higher later in the alphabet—'D' is
greater than 'C', but it’s not greater than 'c'. ASCII values increase as expected for numeric
characters—'3' is greater than '2'.

You do not need to know any actual ASCII values to solve this problem!

int main() {
 char ch; // Input character

 // Prompt for/read input character
 printf("Enter character: ");
 scanf("%c", &ch);

 // Test for letter and print appropriate statement
 if ((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z'))
 printf("%c is a letter\n", ch);

 // Test for number and print appropriate statement
 else if (ch >= '0' && ch <= '9')
 printf("%c is a number\n", ch);

 // Handle all other cases
 else
 printf("%c is neither\n", ch);
}

 6

3. (20 points, 5 points each) While and do-while loops
a. What is the output of the short code sequence below? Choose only one answer.

x = 1;
while ((x % 3) != 0) {
 printf("%d ", x);
 x = x + 4;
}

i. No output—the loop condition is initially false

ii. 1

iii. 1 5

iv. 1 5 9

v. 1 5 9 13

b. Given the code sequence below:

int x, y;
do {

 scanf("%d %d", &x, &y);
 } while ((x < 0) || (y > 0));

Which of the following possible input pairs will cause the do-while loop to end? In other words,
which value(s) will cause the loop condition to be false? This question has at least one correct
answer, but may have more than one correct answer! Circle ALL choices that correctly
answer the question.

i. 0 0

ii. 1 1

iii. -1 -1

iv. -3 5

v. 5 -3

 7

3 (continued)
c. Which loops below produce the following output?

* * *

This question has at least one correct answer, but may have more than one correct answer!
Circle ALL choices that correctly answer the question.

i. int a = 3;
 while (a) {
 printf("* ");
 a = a - 1;
 }

ii. int b = 0;

 do {
 b = b + 1;
 printf("* ");
 } while (b <= 3);

iii. int c = 10;

while (c > 0) {
 c = c / 3;
 printf("* ");
 }

iv. int d = 1;
do {

 printf("* ");
 d = d * 2;
 } while (d – 6 < 0);

d. Which of the following statements accurately reflect your opinion(s)? Circle all that apply

(but please don’t waste too much time on this “question”)!

i. “This course is moving too quickly.”

ii. “This course is moving too slowly.”

iii. “I’ve attended very few lectures, so I don’t really know what the pace of the course is.”

iv. “I hope the next exam is as easy as this question.”

All choices are “correct.”

 8

4. (10 points) EXTRA CREDIT
REMEMBER, YOU CANNOT GET EXTRA CREDIT WITHOUT WRITING AT LEAST
PARTIAL SOLUTIONS FOR ALL OTHER PROBLEMS ON THE EXAM.
Complete the program below, which calculates and prints all Fibonacci numbers that are strictly
less than the input value limit. The first two Fibonacci numbers are 0 and 1; each subsequent
value in the sequence is the sum of the two numbers preceding it: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 …
If limit is so low that it prevents you from printing at least the first three values in the
sequence, print an error message. Examples are shown below:

• If	
 limit == 5,	
 print: 0 1 1 2 3
• If	
 limit == 40,	
 print: 0 1 1 2 3 5 8 13 21 34
• If	
 limit == -1,	
 print: Error: Limit is too low

Solution:
int main() {
 int limit; // Upper limit
 int num1, num2; // Values used to calculate sequence

 // Prompt for and read limit
 printf("Enter limit: ");
 scanf("%d", &limit);

 // COMPLETE PROGRAM AS DESCRIBED ABOVE

// Exit if limit is too low to print at least 3 values
 if (limit < 2) {
 printf("Error: Limit is too low\n");
 return 0;
 }

 // Initialize num1 and num2 and print first 2 values
 num1 = 0;
 num2 = 1;
 printf("0 1 ");

// Loop that keeps calculating Fibonacci numbers as long as
// next value is less than limit

 while (num1 + num2 < limit) {
 printf("%d ", num1 + num2); // Print next value

// Update num1 and num2—SEE NEXT PAGE FOR EXPLANATION
 num2 = num1 + num2; // num2 = most recent value
 num1 = num2 – num1; // num1 = old value of num2
 }

 return 0;

 9

}

4 (continued)

To see why the equation for num1 works, let num1’ and num2’ be the new values of num1
and num2 calculated in each loop iteration. Once we overwrite num2, to get its old value, we
have to work with the equation for the new value.

Since num2’ = num1 + num2, it follows that num2 = num2’ – num1 = num1’

