
EECE.2160: ECE Application Programming
Fall 2017

Exam 3 Solution

1. (34 points) Structures
a. (14 points) Show the output of the short program below exactly as it will appear on the

screen. Be sure to clearly indicate spaces between characters when necessary.
You may use the available space to show your work as well as the output; just be sure to clearly
mark where you show the output so I can easily recognize your final answer.
The Struct1 structure definition is in the extra document provided with the exam.

void f1(Struct1 *s1ptr, int a, int b) { Sets v1 and v2 members
 s1ptr->v1 = a + b; of structure to sum and
 s1ptr->v2 = a * b; product of a and b
}

void f2(Struct1 *s1ptr) { Prints structure contents
 printf("%d %d\n", s1ptr->v1, s1ptr->v2);
}

int main() {
 Struct1 x = {5, 3}; x.v1 = 5, x.v2 = 3
 Struct1 y, z;

 f1(&y, x.v2, x.v1); y.v1 = x.v2 + x.v1 = 3 + 5 = 8
 y.v2 = x.v2 * x.v1 = 3 * 5 = 15

 f1(&z, y.v2, x.v2); z.v1 = y.v2 + x.v2 = 15 + 3 = 18
 z.v2 = y.v2 * x.v2 = 15 * 3 = 45
 f2(&x);
 f2(&y);
 f2(&z);

 return 0;
}

OUTPUT:
5 3
8 15
18 45

 2

1 (continued)
b. (20 points) Complete the function described below:
double semesterGPA(GradeList *glp);

This function reads a GradeList structure, pointed to by argument glp, and calculates and
returns the grade point average, in which each grade is weighted by the number of credits per
class. Each grade is represented by a letter (A, B, C, D, F)—no + or – grades—and is worth the
following number of points: A = 4 points, B = 3 points, C = 2 points, D = 1 point, F = 0 points.

The GradeList structure definition and test cases for this function are in the extra document
provided with the exam.
double semesterGPA(GradeList *glp) {
 int i; // Loop index
 double GP; // Total grade points
 int cred; // Total credits

 // Initialize variables
 GP = 0;
 cred = 0;

 // Go through all elements of arrays in grade list
 for (i = 0; i < glp->nClass; i++) {

 // Add credits for current class
 cred = cred + glp->nCred[i];

 // Add grade points for current class
 // NOTE: You can ignore 'F' since it’s worth 0 points
 switch (glp->grd[i]) {
 case 'A':
 GP += 4 * glp->nCred[i];
 break;
 case 'B':
 GP += 3 * glp->nCred[i];
 break;
 case 'C':
 GP += 2 * glp->nCred[i];
 break;
 case 'D':
 GP += glp->nCred[i];

 }
 }

 // Return final weighted GPA
 return GP / cred;
}

 3

2. (25 points) File I/O
a. (5 points) A program must read a binary file, f1.bin, which contains a set of integer

values, store those values in an array, and print the array contents to the screen. The file has
at least 1 value in it and may hold up to 200 values.

Which of the choices below will always perform the operations described above correctly,
regardless of the file size? Assume the file always opens with no errors.

Clearly indicate your response by marking the one choice you think best answers the question.

i. int x; Always reads just one integer
FILE *fp = fopen("f1.bin", "rb");
fread(&x, sizeof(int), 1, fp);
printf("%d", x);

ii. int i; Doesn’t work if file contains <200 values
int arr[200];
FILE *fp = fopen("f1.bin", "rb");
fread(arr, sizeof(int), 200, fp);
for (i = 0; i < 200; i++)
 printf("%d\n", arr[i]);

iii. int i, n;
int arr[200];
FILE *fp = fopen("f1.bin", "rb");
n = fread(arr, sizeof(int), 200, fp);
for (i = 0; i < n; i++)
 printf("%d\n", arr[i]);

iv. int i, n; Tries to print results to input file
int arr[200]; through file pointer fp
FILE *fp = fopen("f1.bin", "rb");
n = fread(arr, sizeof(int), 200, fp);
for (i = 0; i < n; i++)
 fprintf(fp, "%d\n", arr[i]);

v. int i, n; Tries to write, not read, input file
int arr[200];
FILE *fp = fopen("f1.bin", "rb");
n = fwrite(arr, sizeof(int), 200, fp);
for (i = 0; i < n; i++)
 printf("%d\n", arr[i]);

 4

2 (continued)
b. (20 points) Complete the function described below:
TicTacToe(char *inName, char *outName);

This function takes two arguments: strings representing the names of an input (inName) and
output file (outName). The input text file represents moves in a game of tic tac toe—each of the
9 lines contains a letter ('X' or 'O') and a row and column number in the 3x3 tic tac toe board.

The function should read each input line, storing the letter into the row and column specified,
and then print the whole 3x3 board to the named output file. You may assume both files always
open without errors. Test cases for this function are in the extra pages supplied with the exam.
void TicTacToe(char *inName, char *outName) {
 FILE *inFP, *outFP; // Input/output file pointers
 char board[3][3]; // Tic tac toe board
 int i, j, k; // Array/loop indexes
 char XO; // Input letter--'X' or 'O'

 // Open input file
 inFP = fopen(inName, "r");

 // Read each row from file, then store letter in board
 for (k = 0; k < 9; k++) {

 fscanf(inFP, " %c %d %d", &XO, &i, &j);
 board[i][j] = XO;
 }

 // Open output file
 outFP = fopen(outName, "w");

 // Print board to output file—one board row per line of output
 for (i = 0; i < 3; i++) {
 for (j = 0; j < 3; j++) {
 fprintf(outFP, "%c ", board[i][j]);
 }
 fprintf("\n");
 }
 // Close files
 fclose(inFP);
 fclose(outFP);
}

 5

3. (17 points) Character & line I/O
a. (12 points) Show the output of the short program below exactly as it will appear on the

screen, assuming the user types the following input at the command line (including a newline
character after the last digit (6)):
97-8-216

Be sure to clearly indicate spaces between characters when necessary. You may use the available
space to show your work as well as the output; just be sure to clearly mark where you show the
output so I can easily recognize your final answer.

int main() {
 char c1, c2, c3;

 while ((c1 = getchar()) != '\n') {
 c2 = fgetc(stdin);
 if (c2 == '\n')
 ungetc(c2, stdin);
 else if (c2 != '-') {
 c3 = getchar();
 if (c3 == '\n')
 ungetc(c3, stdin);
 }

 printf("%c %c %c\n", c3, c2, c1);
 }

 return 0;
}

Notes on solution:
Each loop iteration reads up to three characters, stopping if (1) any of the characters is a newline
(which is placed back in the input so the loop condition becomes false), or (2) the second
character is '-' (c3 only changes if c2 != '-'). The three characters are printed in reverse
order at the end of each iteration (c3, c2, c1)

The program takes four iterations to process all input characters:
• Iteration 1: c1 = '9', c2 = '7', c3 = '-'
• Iteration 2: c1 = '8', c2 = '-' (so nothing new is read into c3, which remains '-')
• Iteration 3: c1 = '2', c2 = '1', c3 = '6'
• Iteration 4: c1 = '\n' à loop ends

OUTPUT:
- 7 9
- - 8
6 1 2

 6

3 (continued)
b. (5 points) You are given the short program below:

int main() {
 char s1[10];
 char s2[10];

 scanf("%s", s1); Reads up to first space à s1 = "You’re"
 fgets(s2, 10, stdin); Reads up to 9 characters, since there
 are >9 characters before newline à
 s2 = " almost d" (fgets() reads
 spaces!)
 printf("%s\n", s1);
 printf("%s\n", s2);

 return 0;
}

What will the program print if the user enters the line below, including a newline at the end?

 You're almost done

Clearly indicate your response by marking the one choice you think best answers the question.

i. You're almost done

ii. You

're almost

iii. You're

 almost done

iv. You're
 almost d

v. You'll be done soon

 7

4. (24 points) Dynamic allocation & linked lists
a. (14 points) Show the output of the short program below exactly as it will appear on the

screen. Be sure to clearly indicate spaces between characters when necessary.
You may use the available space to show your work as well as the output; just be sure to clearly
mark where you show the output so I can easily recognize your final answer.

int main() {
 int i;
 int *p;
 int s[3] = {4, 7, 5};

 p = (int *)calloc(s[0], sizeof(int)); p = {0, 0, 0, 0}
 for (i = 0; i < s[0]; i++)
 printf("%d ", p[i]);
 printf("\n");

 p = (int *)realloc(p, s[1] * sizeof(int)); p = {0, 0, 0, 0,
 ?, ?, ?}
 for (i = 0; i < s[1]; i++) {
 p[i] = s[i%3]; p[0] = p[3] = p[6] = 4
 p[1] = p[4] = 7
 p[2] = p[5] = 5
 printf("%d ", p[i]);
 }
 printf("\n");

 p = (int *)realloc(p, s[2] * sizeof(int)); p = {4, 7, 5, 4, 7}
 for (i = 0; i < s[2]; i++) {
 p[i] = p[i] / 2; p = {2, 3, 2, 2, 3}
 printf("%d ", p[i]);
 }
 printf("\n");

 return 0;
}

OUTPUT:
0 0 0 0
4 7 5 4 7 5 4
2 3 2 2 3

 8

4 (continued)
b. (5 points) Say you have a linked list built using the structure definition below for each node:

typedef struct node {
 int value; // Data
 struct node *next; // Pointer to next node

} LLnode;

Assume you have a pointer, list, which points to the first node in the linked list. You are also
given two other variables, which are declared as follows:
 LLnode *p; // General node pointer
 int n = 0; // Counter

Which of the following code snippets will set n equal to the total number of nodes in the list?
Clearly indicate your response by marking the one choice you think best answers the question.

i. p = list; n = size of pointer, not whole list
n = sizeof(p);

ii. p = list; Loop doesn’t run unless list is
while (p == NULL) { empty (p == NULL), and program will
 p = p->next; crash when you attempt to access
 n++; p->next
}

iii. p = list; n = sum of all values in list
while (p != NULL) {
 n += p->val;
 p = p->next;
}

iv. p = list;
while (p != NULL) {
 p = p->next;
 n++;
}

 9

4 (continued)
c. (5 points) Circle one (or more) of the choices below that you feel best “answers” this

“question.”

i. “Thanks for the free points.”

ii. “This is the best final exam I’ve taken today.”

iii. “It’s a good thing we have this exam today—I couldn’t think of anything better to do on a

Saturday afternoon.”

iv. None of the above.

All of the above are “correct.”

 10

5. (10 points) EXTRA CREDIT
Everyone may attempt this problem, even if you have not at least partially solved the rest of
the exam. Remember, you can earn partial credit for a partial solution to this problem.
Show the output of the short program below exactly as it will appear on the screen. Be sure to
clearly indicate spaces between characters when necessary. (Hint: The final output is easily
readable, but you must show at least some work to get credit.)

Definitions for the Node structure, add1(), and add2() are on the extra handout.

int p4b() {
 int i;
 Node arr[17] = { {3, 'u', NULL}, {16, 'a', NULL}, {7, 'o', NULL},
 {10, 'b', NULL}, {1, 'y', NULL}, {14, 'e', NULL},
 {0, ' ', NULL}, {18, 'k', NULL}, {2, 'y', NULL},
 {8, 'r', NULL}, {0, 'o', NULL}, {12, 'r', NULL},
 {6, 'j', NULL}, {9, ' ', NULL}, {1, 'n', NULL},
 {20, '!', NULL}, {2, 'E', NULL} };
 Node *first = NULL;
 Node *n;

 for (i = 0; i < 17; i++) {
 if (i % 2 == 0)
 first = add1(first, &arr[i]);
 else
 first = add2(first, &arr[i]);
 }

 n = first;
 while (n != NULL) {
 printf("%c", n->ch);
 n = n->next;
 }
 printf("\n");

 return 0;
}

Solution notes: Each array entry is a linked list Node, with an integer value that may be used to
place it in the list, and a character that will be printed when the list is traversed at the end. Each
node’s next pointer starts as NULL but is overwritten when the node is added to the list.

The two add functions are basically the addNode() and addSortedNode() functions we
wrote in class, only the nodes have already been allocated and filled with data. add1()adds a
node to the beginning of the list, while add2() uses the val field in the node to sort the new
node being added. The for loop in main() alternates between the two add functions.

The next page shows how the list is updated, showing the node that’s added each time, the
function used to add it, and the set of characters in the list after tha.

 11

Node being added add func.
used Characters in list

{3, 'u', NULL} add1
(unordered)

u

{16, 'a', NULL} add2
(ordered)

ua

{7, 'o', NULL} add1 oua
{10, 'b', NULL} add2 ouba
{1, 'y', NULL} add1 youba
{14, 'e', NULL} add2 youbea
{0, ' ', NULL} add1 youbea
{18, 'k', NULL} add2 youbeak
{2, 'y', NULL} add1 y youbeak
{8, 'r', NULL} add2 y yourbeak
{0, 'o', NULL} add1 oy yourbeak
{12, 'r', NULL} add2 oy yourbreak
{6, 'j', NULL} add1 joy yourbreak
{9, ' ', NULL} add2 joy your break
{1, 'n', NULL} add1 njoy your break
{20, '!', NULL} add2 njoy your break!
{2, 'E', NULL} add1 Enjoy your break!

The while loop at the end of the program simply traverses the list and prints every character, so
the output is:

Enjoy your break!

