
EECE.2160: ECE Application Programming
Fall 2017

Exam 2 Solution

1. (35 points) Functions
a. (15 points) Show the output of the short program below exactly as it will appear on the

screen. Be sure to clearly indicate spaces between characters when necessary.
You may use the available space to show your work as well as the output; just be sure to clearly
mark where you show the output so I can easily recognize your final answer.

int f(int a1, int *a2) {
 int temp = *a2; Copy value to which a2 points
 *a2 = a1 * 2; Double value of first argument and
 store wherever a2 points
 a1 = temp; Overwrite a1 with copy of original
 return a1 / 2; value to which a2 pointed and
} return half of that value (does
 not change original variable
 passed as a1, since that argument
 is passed by value)
int main() {
 int v1, v2, v3, v4;

 v1 = 20;
 v2 = 30;
 v3 = f(v1, &v2); Sets v2 = v1 * 2 = 20 * 2 = 40 and
 v3 = original v2 / 2 = 30 / 2 = 15

 printf("%d %d %d\n", v1, v2, v3);

 v4 = f(v2, &v3); Sets v3 = v2 * 2 = 40 * 2 = 80 and
 v4 = original v3 / 2 = 15 / 2 = 7

 printf("%d %d %d %d\n", v1, v2, v3, v4);

 return 0;
}

OUTPUT:
20 40 15
20 40 80 7

 2

1 (continued)
b. (20 points) Complete the function described below: void squareGrid(int nBox);

This function prints a square grid, where the number of boxes in each row and column of the grid
is determined by the input argument nBox. For each iteration of the “row” loop, the function
actually prints two rows of output: a set of '+' and '-' characters for the top or bottom part of
a set of boxes, and then a set of '|' and ' ' characters for the boxes’ middle part.

For example, calling squareGrid(3) would generate the following output:
 +-+-+-+
 | | | |
 +-+-+-+
 | | | |
 +-+-+-+
 | | | |
 +-+-+-+

void squareGrid(int nBox) {
 int i, j; // Loop indexes

 // Outer loop to control number of rows
 for (i = 0; i <= nBox; i++) {

 // Loop to print top/bottom of boxes
 for (j = 0; j <= nBox; j++) {
 if (j < nBox)
 printf("+-");
 else
 printf("+\n");
 }

 // For all rows except last one, print middle of boxes
 if (i < nBox) {
 for (j = 0; j <= nBox; j++) {
 if (j < nBox)
 printf("| ");
 else
 printf("|\n");
 }
 }
 }
}

 3

2. (45 points) Arrays
a. (12 points) Show the output of the short program below exactly as it will appear on the

screen. Be sure to clearly indicate spaces between characters when necessary.
You may use the available space to show your work as well as the output; just be sure to clearly
mark where you show the output so I can easily recognize your final answer.

int main() {
 int arr[6] = {9, 3, 4}; arr[] = {9, 3, 4, 0, 0, 0}
 int i;

 for (i = 5; i >= 0; i--) { Print array contents from

printf("%d ", arr[i]); last element to first

if (arr[i] == 0) Changes last three elements
 arr[i] = arr[5-i]; arr[5] = arr[0] = 9
 arr[4] = arr[1] = 3
 arr[3] = arr[2] = 4

else Changes first three elements
 arr[i] = arr[i+1] - 1; arr[2] = arr[3] – 1 = 3
 arr[1] = arr[2] – 1 = 2
 arr[0] = arr[1] – 1 = 1

 }
 printf("\n");
 for (i = 0; i < 3; i++) Prints elements in
 printf("%d %d\n", arr[i], arr[i+3]); pairs, with indexes
 separated by 3
 (arr[0] & arr[3],
 arr[1] & arr[4],
 arr[2] & arr[5])
 return 0;
}

OUTPUT:
0 0 0 4 3 9
1 4
2 3
3 9

 4

2 (continued)
b. (13 points) Show the output of the short program below exactly as it will appear on the

screen. Be sure to clearly indicate spaces between characters when necessary. NOTE: Both
printf() calls that print values from list[][] use a precision of 1.

You may use the available space to show your work as well as the output; just be sure to clearly
mark where you show the output so that I can easily recognize your final answer.

int main() {
 int i, j;
 double list[2][4] = { {1.2, 3.4, 5.6, 7.8},
 {9.8, 7.6, 5.4, 3.2} };

 for (i = 1; i >= 0; i--) { Prints array contents
 for (j = 3; j >= 0; j--) { with last row first
 printf("%.1lf ", list[i][j]); and last column first in
 } each row
 printf("\n");
 }

 for (i = 0; i < 8; i++) Prints array elements
 printf("%.1lf\n", list[i%2][i%4]); based on modulus result:
 return 0; i = 0 à list[0][0]
} i = 1 à list[1][1]
 i = 2 à list[0][2]
 i = 3 à list[1][3]
 i = 4 à list[0][0]
 i = 5 à list[1][1]
 i = 6 à list[0][2]
 i = 7 à list[1][3]

OUTPUT:
3.2 5.4 7.6 9.8
7.8 5.6 3.4 1.2
1.2
7.6
5.6
3.2
1.2
7.6
5.6
3.2

 5

2 (continued)
c. (20 points) Complete the function described below:
int mostWins(int p1[], int p2[], int n);
This function takes three arguments: arrays p1 and p2, which represent the scores of games
between two players, and an integer n, which represents the number of games. The function
should determine if player 1 or player 2 won more games and return the winning player’s
number. If both players won the same number of games, the function returns 0. For example:
• mostWins({1,1,1}, {3,-1,2}, 3) returns 2 (P2 won 2 of 3 games)
• mostWins({0,1,2,3}, {-1,-2,-3,-4}, 4) returns 1 (P1 won 4 of 4 games)
• mostWins({1,2,3}, {3,2,1}, 3) returns 0 (Each player won 1 game and tied 1

game, so neither player won more games than the other)

int mostWins(int p1[], int p2[], int n) {
 int i; // Loop index
 int p1W, p2W; // Wins for each player

 // Initialize variables
 p1W = p2W = 0;

 // Go through arrays and determine winner of each match,
 // keeping track of the total number of wins for each player
 for (i = 0; i < n; i++) {

 // Player 1 won
 if (p1[i] > p2[i])
 p1W++;

 // Player 2 won
 else if (p2[i] < p1[i]) // Can’t just use else—array
 p2W++; // entries could be equal!
 }

 // Return number of winning player or 0 if tied
 if (p1W > p2W)
 return 1;

 else if (p2W > p1W)
 return 2;

 else
 return 0;
}

 6

3. (20 points, 5 points each) For loops; strings
For each of the multiple choice questions below, clearly indicate your response by circling or
underlining the one choice you think best answers the question.

a. What is the output of the short code sequence below?

int i;
int val = 1;
for (i = 0; i < 5; i += val) {
 val += i;
 printf("%d %d ", i, val);

 }

i. 0 1

ii. 1 1 2 3

iii. 0 1 2 3 4

iv. 0 1 1 2 3 5

v. 0 1 1 2 2 4 3 7 4 11

b. Given two strings, s1 = "Exam 2" and s2 = "Exasperated", which of the

following function calls will return 0?

i. strlen(s1);

ii. strcmp(s1, s2);

iii. strncmp(s1, s2, 3);

iv. strncat(s1, s2, 3);

v. All of the function calls above return non-zero values

 7

3 (continued)
c. What is the output of the short code sequence below?

char s1[50] = "Q";
 char s2[50] = "3";
 int i;

 for (i = 0; i < 3; i++) {
 strcat(s1, s2);
 strncpy(s2, s1, i + 1);
 s2[i+1] = '\0'; // Ensure s2 is null terminated
 // Does not affect final output
 }
 printf("%s %s\n", s1, s2);

i. Q 3

ii. Q3 Q

iii. Q3Q Q3

iv. Q3QQ3 Q3Q

v. Q3QQ3Q3Q Q3QQ

d. Which of the following statements accurately reflect your opinion(s)? Circle all that apply

(but please don’t waste too much time on this “question”)!

i. “I think the most recent programming assignments are still pretty easy.”

ii. “I think the programming assignments have gotten to be too difficult.”

iii. “I think the programming assignments have gotten harder, but are still fair.”

iv. “Is the semester over yet?”

All of the above answers are “correct.”

 8

4. (10 points) EXTRA CREDIT
REMEMBER, YOU CANNOT EARN EXTRA CREDIT WITHOUT WRITING AT
LEAST PARTIAL SOLUTIONS FOR ALL OTHER PROBLEMS ON THE EXAM.
However, you can earn partial credit for a partial solution to this problem.

Write the function with the function prototype and description below:
unsigned int substrMatch(char *s1, char *s2, unsigned int len,
 unsigned int *pos1, unsigned int *pos2);

A substring is a short string within a larger string that can be defined by its starting position and
length. For example, given the string char s[] = "Example", a substring of length 3
starting at position 2 within s is "amp".

The substrMatch() function searches its two string arguments, s1 and s2, to see if both
strings contain a matching substring of length len.

• If a match exists, the function returns 1, and the starting positions of the matching
substring within s1 and s2 are stored in the variables pointed to by pos1 and pos2,
respectively.

• If no match exists, the function returns 0, and the variables pointed to by pos1 and
pos2 are unchanged.

Notes and hints:

• Given a string s[], you can access a substring at position i using &s[i]. For example,
given char s[] = "Example", printf(&s[2]); would print ample

• If there are multiple matching substrings of the desired length in s1 and s2, your
function should “find” the substring that appears earliest in s1.

• The only string functions you are allowed to use in your solution are the ones we
discussed in class: strcpy()/strncpy(), strcmp()/strncmp(), strlen(),
and strcat()/strncat().

Test cases:

Given char q[] = "strictest", char r[] = "test", and unsigned ints p1, p2:

• substrMatch(q, r, 2, &p1, &p2) returns 1, with p1 = 0 and p2 = 2
(a substring of length 2 ("st") is found at position 0 in q and position 2 in r)

• substrMatch(q, r, 3, &p1, &p2) returns 1, with p1 = 5 and p2 = 0
(a substring of length 3 ("tes") is found at position 5 in q and position 0 in r)

• substrMatch(q, r, 5, &p1, &p2) returns 0
(no matching substring of length 5 exists in the 2 strings)

Use the space on the next page to write your solution.

 9

4 (continued) SOLUTION A few notes on the solution:

• Basically, you need to go through both s1 and s2 until either (1) you find a matching
substring in both strings or (2) you reach the end of both without finding any match.

o “Going through” the strings requires you to track your position in each, so the
solution contains a pair of for loops, one for s1 and one for s2.

o The upper limit on each loop is the length of the string minus len, which is the
last possible position a substring of length len could start.

• The hint about accessing a substring through the address of its starting character tells you
can use any string function with a substring by passing in its starting address.

o That means you can use string comparison functions to compare substrings by
passing the starting addresses of those substrings.

o So, the strncmp() function is a perfect fit for this problem, since it will allow
us to compare two substrings of our desired length.

• If you didn’t think of using the strncmp() function, you could basically write your
own version—a loop that goes through len characters in each string, starting at position
i in s1 and j in s2, and tracks whether all the characters match.

unsigned int substrMatch(char *s1, char *s2, unsigned int len,
 unsigned int *pos1, unsigned int *pos2)
{
 int i, j; // Loop indexes

 // Go through both strings, comparing substrings of length
 // "len" until a match is found
 // strlen(<string>) - len is last position in which
 // substring of length "len" can start in <string>
 for (i = 0; i <= strlen(s1) - len; i++) {
 for (j = 0; j <= strlen(s2) - len; j++) {

 // Match found at position i in s1, j in s2,
 // so assign i to whatever pos1 points to,
 // j to whatever pos2 points to, and return 1
 if (strncmp(&s1[i], &s2[j], len) == 0) {
 *pos1 = i;
 *pos2 = j;
 return 1;
 }
 }
 }

 // If you reach the end of both loops without returning,
 // no match --> return 0 without changing positions
 return 0;
}

