
EECE.2160: ECE Application Programming
Fall 2016
Exam 3

December 17, 2016

Name: ___

Section (circle 1): 201 (MWF 12-12:50) 202 (MWF 1-1:50)

For this exam, you may use only one 8.5” x 11” double-sided page of notes. All electronic
devices (e.g., calculators, cell phones, tablets) are prohibited. If you have a cell phone, please
turn it off prior to the start of the exam to avoid distracting other students.
The exam contains 3 questions for a total of 100 points. Please answer the questions in the spaces
provided. If you need additional space, use the back of the page on which the question is written
and clearly indicate that you have done so.

Please read each question carefully before you answer. In particular, note that:
• Question 3 has three parts, but you are only required to complete two of the three parts.

o You may complete all three parts for up to 10 points of extra credit. If you do so,
please clearly indicate which part is the extra one—I will assume it is part (c)
if you mark none of them.

• For each part of Question 3, you must complete a short function. I have provided
comments to describe what your function should do and written some of the code for you.

o Note that each function contains both lines that are partially written (for example,
a printf() call missing the format string and expressions) and blank spaces in
which you must write additional code. You must write all code required to
make each program work as described—do not simply fill in the blank lines.

o Each function is accompanied by one or more test cases. Each test case is an
example of how the function should behave in one specific case—it does not
cover all possible results of using that function.

• You can solve each part of Question 3 using only the variables that have been declared,
but you may declare and use other variables if you want.

You will have 3 hours to complete this exam.

Q1: Multiple choice / 20
Q2: Dynamic memory allocation / 40
Q3: Structures / 40

TOTAL SCORE / 100
EXTRA CREDIT / 10

 2

1. (20 points, 4 points per part) Multiple choice
For each of the multiple choice questions below, clearly indicate your response by circling or
underlining the one choice you think best answers the question.

a. Which of the following choices attempts to open a file for writing and, if the file cannot be

opened, ensures all output intended for the file will be printed to the screen instead?

i. FILE *fp = fopen("myfile.txt", "r");
if (fp == NULL)
 fp = stdin;

ii. FILE *fp = fopen("myfile.txt", "r");
if (fp == NULL)
 fp = stdout;

iii. FILE *fp = fopen("myfile.txt", "w");
if (fp == NULL)
 fp = stdin;

iv. FILE *fp = fopen("myfile.txt", "w");
if (fp == NULL)
 fp = stdout;

v. None of the above

 3

1 (continued)
b. You have a program that contains an array declared as:

 int arr[40];

Which of the following code snippets would correctly read the contents of this array from a
file?

i. FILE *fp = fopen("input.txt", "rb");
fread(arr, sizeof(int), 40, fp);

ii. FILE *fp = fopen("input.txt", "rb");
fread(fp, sizeof(int), 40, arr);

iii. FILE *fp = fopen("input.txt", "r");
fscanf(fp, "%lf", arr);

iv. FILE *fp = fopen("input.txt", "rb");
fwrite(arr, sizeof(double), 40, fp);

 4

1 (continued)
c. Assume the pointer LLnode *first points to the first node of a linked list (see the

structure definitions sheet for the LLnode definition). Which of the following code
sequences counts the number of nodes in the list and stores that value in a variable count?

i. unsigned int count = 0;

LLnode *p = first;
while (p == NULL) {
 p = p->next;
 count++;
}

ii. unsigned int count = 0;

LLnode *p = first;
while (p != NULL) {
 p = p->next;
}

iii. unsigned int count = 0;
LLnode *p = first;
while (p != NULL) {
 p = p->next;
 count++;
}

iv. unsigned int count = 0;
LLnode *p = first;
while (p->next != NULL) {
 p = p->next;
 count++;
}

 5

1 (continued)
d. Assume the pointer LLnode *first points to the first node of a linked list (see the

structure definitions sheet for the LLnode definition). Which of the following pieces of code
modifies the list so that it is circular? (In a circular linked list, rather than the “next” pointer
in the last node being NULL, the “next” pointer in the last node points to the first node.)

i. last->next = first;

ii. LLnode *p = first;
while (p != NULL)
 p = p->next;
p->next = first;

iii. LLnode *p = first;
while (p->next != NULL)
 p = p->next;
p->next = first;

iv. LLnode *p = first;
p->next = first;

e. Circle one (or more) of the choices below that you feel best “answers” this “question.”

i. “Thanks for the free points.”

ii. “I don’t REALLY have to answer the last two questions, do I?”

iii. “This is the best final exam I’ve taken today.”

iv. None of the above.

 6

2. (40 points) Dynamic memory allocation
For each short program shown below, list the output exactly as it will appear on the screen. Be
sure to clearly indicate spaces between characters when necessary. Assume all necessary
libraries are included.

You may use the available space to show your work as well as the output; just be sure to clearly
mark where you show the output so that I can easily recognize your final answer.

a. (13 points)
int main() {
 int len[] = {5, 3, 6, 2};
 int *p1 = NULL;
 int i, j;

 for (i = 0; i < 4; i++) {
 if (p1 == NULL)
 p1 = (int *)calloc(len[i], sizeof(int));
 else
 p1 = (int *)realloc(p1, len[i] * sizeof(int));

 for (j = 0; j < len[i]; j++) {
 p1[j] = len[j % 4] / (i + 1);
 printf("%d ", p1[j]);
 }
 printf("\n");
 }

 free(p1);
 return 0;
}

 7

2 (continued)
b. (13 points) Remember: tolower('A') = 'a'; tolower('b') = 'b'
int main() {
 char *str;
 char test1[] = "ECE Application Programming";
 char test2[] = "xcellent";

 str = (char *)malloc((strlen(test1)+1) * sizeof(char));
 strcpy(str, test1);
 printf("%s\n", str);

 str[1] = '\0';
 str = (char *)realloc(str,
 (strlen(test1) + strlen(test2) + 1) * sizeof(char));
 strcat(str, test2);
 printf("%s\n", str);

 str = (char *)realloc(str, 5 * sizeof(char));
 str[0] = tolower(str[0]);
 str[2] = str[2] - 2; // Hint: think about ASCII values,
 str[3] = str[4] + 1; // letters, & alphabetical order
 str[4] = '\0';
 printf("%s\n", str);

 free(str);
 return 0;
}

 8

2 (continued)
c. (14 points) See the provided extra sheet for the LLnode structure definition, as well as the

addNode() and printList() function definitions
LLnode *func(LLnode *list) {
 LLnode *prev = NULL;
 LLnode *cur = list;
 LLnode *next = NULL;
 while (cur != NULL) {
 next = cur->next;
 cur->next = prev;
 prev = cur;
 cur = next;
 }
 return prev;
}

void main() {
 LLnode *head = NULL;
 char myStr[] = "Exam 3";
 char temp;
 int i = 0;
 while ((temp = myStr[i++]) != 0) {
 if (temp != ' '){
 printf("%c\n", temp);
 head = addNode(head, temp);
 }
 }
 printList(head);
 printList(func(head));
}

 9

3. (40 points, 20 per part) Structures
For each part of this problem, you are given a short function to complete. CHOOSE ANY TWO
OF THE THREE PARTS and fill in the spaces provided with appropriate code.

You may complete all three parts for up to 10 points of extra credit, but must clearly
indicate which part is the extra one—I will assume it is part (c) if you mark none of them.

Remember, you must write all code required to make each function work as described—do not
assume you can simply fill in the blank lines and get full credit.

Also, remember that each example provided is only applicable in one specific case—it does not
cover all possible results of using that function.

In order to allow plenty of space to solve each problem, this page is essentially just a “cover
sheet” for Question 3—the actual problems start on the next page.

Each of these functions works with one or more structures. You can find the structure
definitions on the extra sheet provided with the exam.

 10

3 (continued)
a. void matrixMult(Matrix *m1, Matrix *m2, Matrix *p);

This function multiplies two Matrix structures pointed to by m1 and m2 and stores the product
(and its dimensions) in the structure pointed to by p. Matrix multiplication works as follows:

• The number of columns in the first matrix must match the number of rows in the second
• The product has the same number of rows as the first matrix and the same number of

columns as the second matrix
• The value in row i and column j of the product is the dot product of row i from matrix

1 and column j from matrix 2. To calculate a dot product, multiply matching members
and add the results.

The example below shows the 2x2 product of multiplying a 2x3 matrix and a 3x2 matrix:

1 2 3
4 5 6 ×

3 2
6 4
9 8

= 1×3+ 2×6+ 3×9 1×2+ 2×4+ 3×8
4×3+ 5×6+ 6×9 4×2+ 5×4+ 6×8 = 42 34

96 76

void matrixMult(Matrix *m1, Matrix *m2, Matrix *p) {
 int i, j, k; // Loop indexes

 // End function if matrices can't be multiplied

 if (___)
 return;

 // Set dimensions (rows & columns) of product

 // Perform actual multiplication as described above

 for (__) {

 for (___) {

 for (___) {

 }
 }
}

 11

3 (continued)
b. int maxVol(Box list[], int n);

This function takes as arguments an array of Box structures, list, as well as the number of
structures in the list, n. The function returns the index of the structure representing the box with
the greatest volume. For example, given:
 Box arr[4] = { {1, 3, 5}, {9, 9, 9}, {4, 3, 2}, {2, 2, 2} };

the function call maxVol(arr, 4) would return 1, as arr[1] has the greatest volume (729,
which is greater than the volumes of arr[0] (volume 15), arr[2] (24), and arr[3] (8)).
int maxVol(Box list[], int n) {
 int i; // Loop index
 int maxI; // Index of largest prism
 double maxVol; // Volume of largest prism

 // Initialize variables as needed

 // Go through list; update max variables if larger box found

 for (__) {

 if (__) {

 }
 }

 // Return index of box with greatest volume

 return ________________________________;
}

 12

3 (continued)
c. void inventory(AutoPart list[], int n, char carMake[]);

This function takes as arguments an array of AutoPart structures, list, as well as the number
of structures in the list, n, and a string, carMake.

Your solution should go through the entire list and print the name, make, and year of all
AutoPart structures that (1) are in stock (i.e., inStock is “true”) and (2) have a make
(contained in the nested structure called type) that matches carMake. For example, given:
 AutoPart partList[] = { {"axle", {"Ford", 2000}, 1},
 {"tire", {"Ford", 2010}, 0},
 {"engine", {"Chevy", 2005}, 1},
 {"mirror", {"Ford", 1978}, 1},
 {"lighter", {"Chevy", 1957}, 0} };

the function call inventory(partList, 5, "Chevy") would print:
 engine
 Chevy
 2005

void inventory(AutoPart list[], int n, char carMake[]) {
 int i; // Loop index

 // Go through entire list

 for (__) {

 // If current structure represents part that is in stock
 // and make is correct, print contents of structure

 if (___

 __) {

 }
 }
}

