
 1

EECE.2160: ECE Application Programming
Fall 2016

Exam 2 Solution

1. (20 points, 5 points per part) Multiple choice
For each of the multiple choice questions below, clearly indicate your response by circling or
underlining the one choice you think best answers the question.

a. Which values listed below for the strings s1 and s2 will cause the function

strncmp(s1, s2, 3) to return a nonzero value?

A. s1 = "string", s2 = "strike"

B. s1 = "String", s2 = "string"

C. s1 = "Test", s2 = "Test"

D. s1 = "Test", s2 = "Exam"

i. Only C

ii. Only D

iii. A and C

iv. B and D

v. A, B, and D

 2

1 (continued)
b. What will the short code sequence below print?
 int i;
 char s1[50] = "E";
 char s2[50] = "C";
 for (i = 0; i < 4; i++) {
 if (i % 2 == 0)
 strcat(s1, s2);
 else
 strcat(s2, s1);
 }
 printf("%s %s\n", s1, s2);

i. EC CE

ii. EC CEC

iii. ECC CEE

iv. ECCEC CEC

v. ECCEC CECECCEC

c. What does the following short code sequence print?
 char s1[20];
 char s2[20];

 strcpy(s1, "Exam 2");
 strncpy(s2, s1, 2);
 s2[2] = '\0';
 s2[3] = 'A';

printf("%s %s\n", s1, s2);

i. Exam 2 Exam 2

ii. Exam 2 Ex

iii. Exam 2 ExA

iv. Ex Exam 2

v. None of the above

 3

1 (continued)

d. Which of the following statements accurately reflect your opinion(s)? Circle all that apply

(but please don’t waste too much time on this “question”)!

i. “I think the most recent programming assignments are still pretty easy.”

ii. “I think the programming assignments have gotten to be too difficult.”

iii. “I think the programming assignments have gotten harder, but are still fair.”

iv. “Is the semester over yet?”

All of the above are “correct.”

 4

2. (40 points) Arrays
For each short program shown below, list the output exactly as it will appear on the screen. Be
sure to clearly indicate spaces between characters when necessary.
You may use the available space to show your work as well as the output; just be sure to clearly
mark where you show the output so that I can easily recognize your final answer.

a. (13 points)
int main() {
 double list[9] = {1.23, 4.56, 7.89, 10.23, 45.67, 89.01};
 int i;

 for (i = 8; i >= 0; i -= 2) { Prints list[8], list[6],
 printf("%.2lf\n", list[i]); list[4], list[2], & list[0]

 if (list[i] == 0) Affects list[8] and list[6],
 list[i] = i / 4.0; since both are 0
 } (declaration of list[] only
 contains 6 initial values,
 so last 3 elements are 0).
 Sets list[8] = 8 / 4.0 = 2.0
 and list[6] = 6 / 4.0 = 1.5

 Loop below prints values starting (almost) in middle of array
 and working way out to ends:

• When i = 1, prints list[3] and list[5]
• When i = 2, prints list[2] and list[6]
• When i = 3, prints list[1] and list[7]
• When i = 4, prints list[0] and list[8]

 for (i = 1; i <= 4; i++)
 printf("%.2lf %.2lf\n", list[4-i], list[4+i]);

 return 0;
}

OUTPUT:

0.00
0.00
45.67
7.89
1.23
10.23 89.01
7.89 1.50
4.56 0.00
1.23 2.00

 5

2 (continued)
b. (13 points)
int main() {
 int arr[3][3] = { {2, 0, 1}, {1, -5, 3}, {2, 15, -4} };
 int i, j;
 int r, c;

 for (i = 0; i < 3; i++) { Prints array contents with
 for (j = 2; j >= 0; j--) { rows in order but columns
 printf("%d ", arr[i][j]); backwards
 }
 printf("\n");
 }

 for (i = 0; i < 3; i++) { Prints 3 elements from array,
 r = arr[i][0]; using first column of array
 c = arr[0][i]; for row numbers and first
 printf("%d\n", arr[r][c]); row of array for column
 } numbers:

• i = 0 à r = c = arr[0][0] = 2 à print arr[2][2] = -4
• i = 1 à r = arr[1][0] = 1, c = arr[0][1] = 0
 à print arr[1][0] = 1
• i = 2 à r = arr[2][0] = 2, c = arr[0][2] = 1

 à print arr[2][1] = 15

 return 0;
}

OUTPUT:

1 0 2
3 -5 1
-4 15 2
-4
1
15

 6

2 (continued)
c. (14 points)
Function uses values in arr2[] as indexes into arr1[] if index
 values fall within array bounds for arr1[] (0 <= index < n1).
If arr2[i] is valid index into arr1[], add i to arr1[] value.
void f(int arr1[], int n1, int arr2[], int n2) {
 int i;
 for (i = 0; i < n2; i++) {
 if ((arr2[i] >= 0) && (arr2[i] < n1))
 arr1[arr2[i]] += i;
 }
}

int main() {
 int list1[] = {100, 8, 5, 3, -11, 2, 0, 1, 4};
 int list2[] = {8, 6, 7, 5, 3, 0, 9};
 int i;

 f(list1, 9, list2, 7); list1[8] = 4 + 0 = 4
 for (i = 0; i < 9; i++) list1[6] = 0 + 1 = 1
 printf("%d ", list1[i]); list1[7] = 1 + 2 = 3
 printf("\n"); list1[5] = 2 + 3 = 5
 list1[3] = 3 + 4 = 7
 list1[0] = 100 + 5 = 105
 list1[9] does not exist

 Remember, list1 is changed by the first call to f(), so now:
 list1[] = {105, 8, 5, 7, -11, 5, 1, 3, 4}
 f(list2, 7, list1, 9); list2[105] does not exist
 for (i = 0; i < 7; i++) list2[8] does not exist
 printf("%d ", list2[i]); list2[5] = 0 + 2 = 2
 printf("\n"); list2[7] does not exist
 list2[-11] does not exist
 list2[5] = 2 + 5 = 7
 list2[1] = 6 + 6 = 12
 list2[3] = 5 + 7 = 12
 list2[4] = 3 + 8 = 11

 return 0;
}

OUTPUT:
105 8 5 7 -11 5 1 3 4
8 12 7 12 11 7 9

 7

3. (40 points, 20 per part) Functions
a. void printTriangle(int len);

This function prints a right triangle with two equal sides of length len. The outer edge of the
triangle is represented by a series of * characters, and the inner part of the box contains only
spaces. The triangle should be printed so that the hypotenuse (the side opposite the right angle)
goes from the top right corner to the bottom left corner. For example, printTriangle(4)
would print the following: * (three spaces followed by a star)
 ** (two spaces followed by two stars)
 * * (one space, one star, one space, one star)
 **** (no spaces, four stars)

Students were required to write bold, underlined, italicized code.
void printTriangle(int len) {
 int i, j, k; // Loop indexes (you may not need all 3)

// Outer loop controls "rows" of output--make sure each "row"
 // starts on a new line
 for (i = len; i > 0; i--) { // Fixed “i++” typo

 // Inner loop controls "columns" of output
 for (j = 1; j <= len; j++)

 // Test to see if current column is on border of triangle
 // If so, print star
 if ((i == 1) || // Bottom row
 (j == len) || // Right side of triangle
 (j == i)) // Hypotenuse of triangle
 printf("*");

 // Otherwise, print space
 else
 printf(" ");
 } // End inner loop

 printf("\n");
 } // End outer loop--remember, each "row" starts on new line

}

 8

3 (continued)
b. int isPerfect(int num);

A perfect number is a positive integer that equals the sum of its positive factors (the numbers that
evenly divide into it), excluding the number itself. For example, the lowest perfect number is 6,
because the factors of 6 are 1, 2, and 3, and 1 + 2 + 3 = 6.

This function takes a single argument, num, and returns 1 if num is a perfect number and 0
otherwise. To determine if a number is perfect, find all of its factors, add them together, and
check if the sum of the factors matches the original number.
Note: For full credit, your loop that finds all factors should not test any values that cannot
possibly be factors of num. Hint: think about the smallest possible factors of any number and
what the corresponding largest factors can be. Remember to exclude the original number itself!
Students were required to write bold, underlined, italicized code.
int isPerfect(int num) {
 int i; // Loop index
 int sum; // Running total of factors

 // Initialize variables as needed
 sum = 1;

 // Return 0 for any value too small to be a perfect number
 if (num < 6)
 return 0;

 // Loop to find all factors of num and add them up
 // Remember, for full credit, this loop shouldn’t test any
 // value that can’t possibly be a factor of num
 for (i = 2; i <= num / 2; i++) {
 if (num % i == 0)
 sum = sum + i;
 }

 // If number is perfect, return 1; otherwise, return 0
 if (sum == num)
 return 1;
 else
 return 0;
}

 9

3 (continued)
c. void avgSD(double list[], int n, double *avg, double *sd);

Given an array, list[], containing n double-precision values, calculate the average and
standard deviation of the array and store them at the addresses pointed to by avg and sd,
respectively. To calculate the standard deviation of a list of values, follow the steps below, using
{7, 5, 3, 1} as an example list:

• Calculate the average of all values (which is 4 for the example values)

• Go through the list and add up the squares of the differences between each value and the
average (for this example, (7 – 4)2 + (5 – 4)2 + (3 – 4)2 + (1 – 4)2 = 9 + 1 + 1 + 9 = 20)

• Divide by the number of values (for this example, 20 / 4 = 5)

• The standard deviation is the square root of that result, which you can find using the
sqrt() function from the math library (for this example, sqrt(5) ≈ 2.236)

Students were required to write bold, underlined, italicized code.

void avgSD(double list[], int n, double *avg, double *sd) {
 double sum; // Running total
 int i; // Loop index

 // Calculate average
 sum = 0;

 for (i = 0; i < n; i++) {
 sum += list[i];
 }
 *avg = sum / n;

 // Calculate standard deviation
 sum = 0;
 for (i = 0; i < n; i++) {
 sum += (list[i] - *avg) * (list[i] - *avg);
 }
 *sd = sqrt(sum / n);
}

