
 1

16.216: ECE Application Programming
Fall 2015

Exam 2 Solution

1. (20 points, 5 points per part) Multiple choice
For each of the multiple choice questions below, clearly indicate your response by circling or
underlining the one choice you think best answers the question.

a. What will the short code sequence below print?
 int i;
 char s1[20];
 char s2[20];
 strcpy(s1, "xo");
 strcpy(s2, "xx");
 for (i = 0; i < 4; i++) {
 strcat(s1, s2);
 if (i > 1)
 s2[0] = 'o';
 }
 printf("%s\n", s1);

i. xo

ii. xoxx

iii. xoox

iv. xoxxxxxxxx

v. xoxxxxxxox

 2

1 (continued)
b. Which of the following code snippets will attempt to open a file for output and redirect

output to the screen if the file cannot be opened?

i. FILE *fp = fopen("outfile.txt", "r");
if (fp == NULL)
 fp = stdin;

ii. FILE *fp = fopen("outfile.txt", "w");
if (fp == NULL)

 fp = stdin;

iii. FILE *fp = fopen("outfile.txt", "r");

if (fp == NULL)
 fp = stdout;

iv. FILE *fp = fopen("outfile.txt", "w");
if (fp == NULL)

 fp = stdout;

v. FILE *fp = fopen("outfile.txt", "w");
if (fp != NULL)
 fp = stdout;

 3

1 (continued)
c. Assuming the file pointer fp accesses a valid input file, which of the following code snippets

will read characters from that file, one at a time, until a letter is found? (In other words, the
last character read into the variable ch will be a letter.)

i. ch = fgetc(fp);

ii. do {
 ch = fgetc(fp);
} while (isalpha(ch));

iii. do {

 ch = fgetc(fp);
} while (!isalpha(ch));

iv. do {

 ch = fgetc(fp);
} while (ch != EOF);

v. fgets(&ch, 1, fp);

d. Which of the following statements accurately reflect your opinion(s)? Circle all that apply

(but please don’t waste too much time on this “question”)!

i. “I think the most recent programming assignments are still pretty easy.”

ii. “I think the programming assignments have gotten to be too difficult.”

iii. “I think the programming assignments have gotten harder, but are still fair.”

iv. “Is the semester over yet?”

All of the above are “correct.”

 4

2. (40 points) Arrays
For each short program shown below, list the output exactly as it will appear on the screen. Be
sure to clearly indicate spaces between characters when necessary.
You may use the available space to show your work as well as the output; just be sure to clearly
mark where you show the output so that I can easily recognize your final answer.

a. (14 points)
int main() {
 int i;
 double arr[] = {1.23, 2.34, 3.45, 4.56, 5.67, 6.78};
 int ind[7] = {5, 1, 3, 2, 0, 4};

 for (i = 5; i > 0; i -= 2) This loop
 printf("%.2lf %.2lf\n", arr[i], arr[i-1]); prints two
 elements from
 arr[] on each
 line, starting
 with the last
 two (arr[5]
 and arr[4])

 for (i = 0; i < 7; i++) This loop uses
 printf("%d %.2lf\n", ind[i], arr[ind[i]]); elements from
 ind[] as the
 return 0; indexes into
} arr[]. Each
 line contains
 the value used
 as an index as
 well as the
 corresponding
 entry from
 arr[].

OUTPUT:
6.78 5.67
4.56 3.45
2.34 1.23
5 6.78
1 2.34
3 4.56
2 3.45
0 1.23
4 5.67
0 1.23

 5

2 (continued)
b. (12 points)
int main() {
 int mat[4][2] = { {9, -5}, {0, 3}, {4, -2}, {-1, -8} };
 int i, j;

 j = 0;
 for (i = 0; i < 4; i++) { The loop selects the second
 j = j + mat[i][1]; value in each row of mat[][],
 if (j < 0) adds that value to the
 j = -j; previous value of j, then
 if (j > 7) makes sure the result falls
 j = j % 8; between 0 and 7.

 printf("%d\n", mat[j%4][j%2]); The row number (j%4)
 } will always be between
 0 and 3; the column
 return 0; number (j%2) is 0 or 1.
}

The code therefore behaves as follows:

• Initially, j = 0.
• When i = 0 à j = j + mat[0][1] = 0 + -5 = -5

o Since j < 0, first if statement makes j = 5
o Code prints mat[5%4][5%2] = mat[1][1] = 3

• When i = 1 à j = j + mat[1][1] = 5 + 3 = 8
o Since j > 7, second if statement makes j = 0
o Code prints mat[0%4][0%2] = mat[0][0] = 9

• When i = 2 à j = j + mat[2][1] = 0 + -2 = -2
o Since j < 0, first if statement makes j = 2
o Code prints mat[2%4][2%2] = mat[2][0] = 4

• When i = 3 à j = j + mat[3][1] = 2 + -8 = -6
o Since j < 0, first if statement makes j = 6
o Code prints mat[6%4][6%2] = mat[2][0] = 4

OUTPUT:
3
9
4
4

 6

2 (continued)
c. (14 points)
void f(int arr[], int n, int gap, int inc) {
 int i, tmp;

 for (i = 0; i < n - gap; i += inc) { This loop goes through
 tmp = arr[i]; the array and swaps
 arr[i] = arr[i+gap]; elements. n-1 is the max
 arr[i+gap] = tmp; array index to access,
 } gap determines the
} distance between values
 that are swapped, and
 inc determines the
 amount by which the
 array index increases
 each iteration.

int main() {
 int list[10] = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19};
 int i;

 f(list, 10, 5, 2); Swaps elements 0 & 5,
 for (i = 0; i < 10; i++) 2 & 7, and 4 & 9.
 printf("%d ", list[i]);
 printf("\n");

 f(list, 6, 1, 1); Swaps elements 0 & 1,
 for (i = 0; i < 10; i++) 1 & 2, 2 & 3, 3 & 4,
 printf("%d ", list[i]); and 4 & 5, which
 printf("\n"); effectively moves
 11 (list[0]) to list[5]
 return 0; and shifts every other
} value to the left.

OUTPUT:
11 3 15 7 19 1 13 5 17 9
3 15 7 19 1 11 13 5 17 9

 7

3. (40 points, 20 per part) Functions
For each part of this problem, you are given a short program to complete. CHOOSE ANY TWO
OF THE THREE PARTS and fill in the spaces provided with appropriate code. You may
complete all three parts for up to 10 points of extra credit, but must clearly indicate which
part is the extra one—I will assume it is part (c) if you mark none of them.

Remember, you must write all code required to make each function work as described—do not
assume you can simply fill in the blank lines and get full credit. Also, remember that each
example provided is only applicable in one specific case—it does not cover all possible results
of using that function.

a. int findReverse(int n);

This function returns a value that contains the digits of its input argument, n, in reverse. For
example, findReverse(456) = 654 and findReverse(2015) = 5102. The general
algorithm requires you to isolate each digit, add it to a running total, then remove that digit from
the remaining total. For example, the steps required for reversing 456 would be:

• Current digit = 6 à Running total = 6, remaining total = 45
• Current digit = 5 à Running total = 65, remaining total = 4
• Current digit = 4 à Running total = 654, remaining total = 0

int findReverse(int n){
 int dig; // Current digit
 int res; // Running total and ultimately final result

 // Initialize variables as needed
 res = 0;

 // Loop until there are no more digits to examine

 while (n >= 1) {

 // Isolate the lowest remaining digit, then combine it with
 // the digits already tested (running total)
 dig = n % 10;
 res = res * 10 + dig;
 n = n / 10;

 }

 return res;
}

 8

3 (continued)
b. void rgb2cmyk(int R, int G, int B, double *C, double *M,
 double *Y, double *K);

This function converts from one color encoding scheme (RGB) to another (CMYK). The RGB
arguments are passed by value; each RGB value is between 0-255. The CMYK results are
arguments passed by address; each CMYK value is between 0-1. The algorithm is as follows:

• Normalize each RGB value (convert it to the range 0 to 1) by dividing by the maximum
possible RGB value.

• Find the maximum (max) of these normalized values.

• The black (K) value is simply 1 – max.

• The other values are based on black and one other color; each can be found using the
formula: (1 - <normalized color> - K) / (1 – K). Cyan (C) is based on red and black,
magenta (M) is based on green and black, and yellow (Y) is based on blue and black.

For example, if red (R) = 51, green (G) = 102, and blue (B) = 153, their normalized values are
0.2, 0.4, and 0.6, respectively. Therefore, K = 1 – 0.6 = 0.4, C = (1 – 0.2 – 0.4) / (1 – 0.4) = 0.67,
M = (1 – 0.4 – 0.4) / (1 – 0.4) = 0.33, and Y = (1 – 0.6 – 0.4) / (1 – 0.4) = 0.

void rgb2cmyk(int R, int G, int B, double *C, double *M,
 double *Y, double *K) {
 double rN, gN, bN; // Normalized versions of r, g, b
 double max; // Max of normalized RGB values

 // Normalize RGB values
 rN = R / 255.0;
 gN = G / 255.0;
 bN = B / 255.0;

 // Find max of normalized RGB values
 max = rN;
 if (gN > max)
 max = gN;
 if (bN > max)
 max = bN;

 // Calculate CMYK values
 *K = 1 – max;
 *C = (1 – rN – *K) / (1 – *K);
 *M = (1 – gN – *K) / (1 – *K);
 *Y = (1 – bN – *K) / (1 – *K);
}

 9

3 (continued)
c. int isSorted(int arr[], int n);

This function tests the array arr[] to see if its first n elements are sorted and returns:
• A negative value if arr[] is sorted from lowest to highest value
• A positive value if arr[] is sorted from highest to lowest value
• 0 if arr[] is not sorted

The general algorithm is as follows:
• Check the difference between consecutive elements until you find two that don’t match.
• Then, check if each pair of consecutive elements is in the same order (lo à hi or hi à lo)

as the first different pair. If you find a pair that’s out of order, return 0.
• If the whole array is sorted, return a positive or negative value as described above

int isSorted(int arr[], int n) {
 int ord; // Tracks whether array is sorted
 int i; // Loop index

 // Set ord to difference between first two array elements
 // Should be negative if first element has lower value
 ord = arr[0] – arr[1];

 // Go through remaining elements; return 0 if order is wrong
 for (i = 1; i < n-1; i++) {

 // If all previous elements match, recalculate ord
 if (ord == 0)
 ord = arr[i] – arr[i+1];

 // If array is found to be out of order, return 0
 // (condition may require two lines to write)
 else if ((ord < 0 && arr[i] > arr[i+1] ||
 (ord > 0 && arr[i] < arr[i+1])) {
 return 0;
 }

 // Array is sorted--return appropriate value
 return ord;
}

