16.482 / 16.561: Computer Architecture and Design Summer 2015

Lecture 2: Key Questions May 21, 2015

1.	Explain the basic hardware method for performing binary multiplication.
2.	Explain the optimizations we can make to this hardware to save bits, and the operation of the refined hardware multiplier.

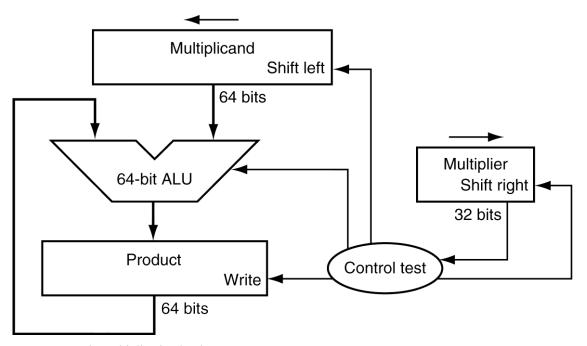


Figure 1: Basic multiplication hardware

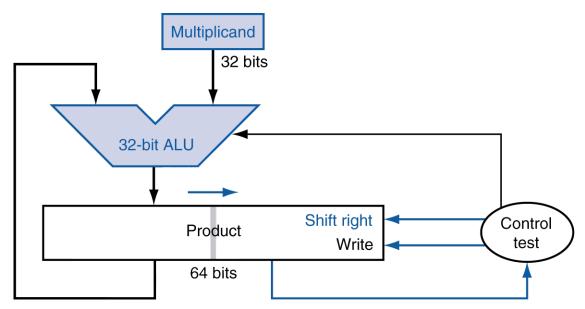


Figure 2: Optimized multiplication hardware

16.482/16.561: Computer Architecture & Design Summer 2015

Instructor: M. Geiger Lecture 2: Key Questions

Show how the refined multiplier handles:

a. 4 x 3

b. 6 x 7

3. Explain how MIPS processors handle multiply operations.

4. Briefly describe division hardware and the MIPS divide instructions.

16.482/16.561: Computer Architecture & Design Summer 2015

Instructor: M. Geiger Lecture 2: Key Questions

5. Describe the IEEE floating-point formats.

6. **Example:** Represent 0.75 in both single and double-precision floating-point format.

7. **Example:** What decimal value is represented by the single-precision float 11000000101000...00?

16.482/16.561: Computer Architecture & Design
Summer 2015

Instructor: M. Geiger Lecture 2: Key Questions

8. Describe floating-point addition.

9. Describe floating-point multiplication.

16.482/16.561: Computer Architecture & Design Summer 2015

Instructor: M. Geiger Lecture 2: Key Questions

10. Describe the MIPS floating-point instructions.