

16.482 / 16.561: Computer Architecture and Design
Summer 2015

Homework #7 Solution

1. (50 points) For each of the following memory hierarchies, calculate the average memory
access time. If you end up with a fractional number of cycles, round up—there isn’t much you
can do (besides read/write the register file) in half a cycle!

a. The cache takes 1 cycle to access and has a 5% miss rate, main memory takes 200 cycles to

access and has an 8% miss rate, and the disk takes 30,000 cycles to access.

Solution: Remember: AMAT = (hit time) + (miss rate) × (miss penalty)
where the miss penalty is simply the AMAT for the next level of the memory hierarchy.
Therefore:

AMAT =1+ (.05)(AMATmain memory)

=1+ (.05)(200+ (.08)(AMATdisk))
=1+ (.05)(200+ (.08)(30, 000))
=1+ (.05)(200+ 2400) =1+ (.05)(2600) =1+130 =131 cycles

b. The cache takes 3 cycles to access and has a 92% hit rate, main memory takes 400 cycles to
access and has a 98% hit rate, and the disk takes 55,000 cycles to access.

Solution: Same idea as part (a), but we’re given hit rates and have to derive miss rates;
remember that (miss rate) = 1 – (hit rate):

AMAT = 3+ (.08)(AMATmain memory)

= 3+ (.08)(400+ (.02)(AMATdisk))
= 3+ (.08)(400+ (.02)(55, 000))
= 3+ (.08)(400+1100) = 3+ (.08)(1500) = 3+120 =123 cycles

16.482/16.561: Computer Architecture & Design Instructor: M. Geiger
Summer 2015 Homework 7 Solution

c. This problem deals with a multi-level cache, as discussed in class. The cache levels are listed
in terms of their order in the memory hierarchy—an access initially goes to the level 1 (L1)
cache. If there is a miss in the L1 cache, you then check the level 2 (L2) cache, then the level
3 (L3) cache, and then main memory.

The L1 cache takes 1 cycle to access, with a 96% hit rate. The L2 cache takes 25 cycles on
each access and has a 95% hit rate. The L3 cache takes 80 cycles to access and has a 98%
hit rate. Main memory takes 600 cycles to access, with an 88% hit rate, while the disk takes
50,000 cycles to access.

Solution: Again, we’re essentially doing the same calculation; there’s just 5 levels in the
memory hierarchy, rather than the 3 we’re used to:

AMAT =1+ (.04)(AMATL2 cache)

=1+ (.04)(25+ (.05)(AMATL3 cache))
=1+ (.04)(25+ (.05)(80+ (.02)(AMATmain memory)))
=1+ (.04)(25+ (.05)(80+ (.02)(600+ (.12)(AMATdisk))))
=1+ (.04)(25+ (.05)(80+ (.02)(600+ (.12)(50, 000))))
=1+ (.04)(25+ (.05)(80+ (.02)(600+ 600)))
=1+ (.04)(25+ (.05)(80+ (.02)(6600)))
=1+ (.04)(25+ (.05)(80+132))
=1+ (.04)(25+ (.05)(212))
=1+ (.04)(25+10.6) =1+ (.04)(35.6) =1+1.424 = 2.424 ≈ 3 cycles

16.482/16.561: Computer Architecture & Design Instructor: M. Geiger
Summer 2015 Homework 7 Solution

2. (50 points) You are given a system which has a 16-byte, write-back cache with 4-byte blocks.
The cache is direct mapped.

a. (10 points) If each address uses 8 bits, what size are the offset, index, and tag?

Solution: Since the blocks are 4 = 22 bytes, the offset is 2 bits.
 The cache contains 16 / (4 * 1) = 4 lines, so the index is 2 bits.
 The tag is 8 – 2 – 2 = 4 bits.

b. (40 points) Assume the initial memory state shown below for the first 16 bytes and last 16

bytes of memory (note: all addresses are listed in decimal):

NOTE: SEE ACTUAL ASSIGNMENT FOR MEMORY CONTENTS

For each access in the sequence listed below, show the cache state, indicate what register (if
any) changes, and indicate if any memory blocks are written back and if so, what addresses and
values are written. The cache state should carry over from one access to the next. As above,
assume 8-bit addresses. Also, assume the cache is initially empty.

Solution: The table below shows the effects of each access; note that changes made to the cache
for each access are shown in bold.

Access Modified
register

Cache state Modified
mem. block V D Tag Data

lb $t0,3($zero) $t0 = 3

1 0 0000 20 8 27 3

None
0
0
0

sb $t0,1($zero) None

1 1 0000 20 3 27 3

None
0
0
0

lb $t1,
241($zero) $t1 = 67

1 0 1111 15 67 78 19

Bytes 0-3 =
[20 3 27 3]

0
0
0

16.482/16.561: Computer Architecture & Design Instructor: M. Geiger
Summer 2015 Homework 7 Solution

sb $t1, 0($zero) None

1 1 0000 67 3 27 3

None
0
0
0

lb $t0,
12($zero) $t0 = 126

1 1 0000 67 3 27 3

None
0
0
1 0 0000 126 85 2 6

sb $t1,
241($zero) None

1 1 1111 15 67 78 19

Bytes 0-3 =
[67 3 27 3]

0
0
1 0 0000 126 85 2 6

sb $t0,
10($zero) None

1 1 1111 15 67 78 19

None
0
1 1 0000 110 72 126 127
1 0 0000 126 85 2 6

lb $t1,
251($zero) $t1 = 93

1 1 1111 15 67 78 19
Bytes 8-11 =
[110 72 126

127]

0
1 0 1111 101 71 89 93
1 0 0000 126 85 2 6

lb $t3,
248($zero) $t3 = 101

1 1 1111 15 67 78 19

None
0
1 0 1111 101 71 89 93
1 0 0000 126 85 2 6

lb $t4,
243($zero) $t4 = 19

1 1 1111 15 67 78 19

None
0
1 0 1111 101 71 89 93
1 0 0000 126 85 2 6

