
16.482 / 16.561: Computer Architecture and Design
Summer 2015

Homework #6 Solution

All problems deal with the following three threads. Note that you must determine the number of
stall cycles between dependent instructions based on the instruction latencies given below:

Thread 1:
L.D F0, 0(R1)
L.D F2, 8(R1)
ADD.D F4, F0, F2
SUB.D F6, F2, F0
S.D F4, 16(R1)
S.D F6, 24(R1)
DSUBUI R1, R1, #32
BNEZ R1, loop

Thread 2:
DADDUI R1, R1, #24
ADD.D F2, F0, F4
ADD.D F4, F6, F8
ADD.D F6, F0, F6
S.D F2, -24(R1)
S.D F4, -16(R1)
S.D F6, -8(R1)
BEQ R1, R7, end

Thread 3:
L.D F6, 0(R1)
ADD.D F8, F8, F6
S.D F8, 8(R1)
DADDUI R1, R1, #16
BNE R1, R2, loop
L.D F6, 0(R1)
ADD.D F8, F8, F6
S.D F8, 8(R1)
DADDUI R1, R1, #16
BNE R1, R2, loop

Assume you are using a processor with the following characteristics:

• 6 functional units: 3 ALUs, 2 memory ports (load/store), 1 branch
• The following instruction latencies:

o L.D/S.D: 4 cycles (1 EX, 3 MEM)
o ADD.D/SUB.D: 2 cycles
o All other operations: 1 cycle

Solution:U When dealing with these threads, the first step is really to identify the dependences
and the latency of the producing instructions. Doing so allows you to figure out both what
instructions are independent, and how many cycles are required between dependent instructions.

Note that just writing the stalls as you normally would using in-order execution isn’t sufficient.
You may run into cases in which stalls that are hidden in a single issue processor show up in
multithreading (or any multiple issue machine, for that matter) because you’re executing
multiple instructions in each cycle.

The breakdown starts on the next page. Note that each instruction has been numbered to make it
easier to list the dependences. The number of cycles shown after each dependence is the number
of cycles required between the producing and consuming instructions. If no other instructions are
available during this time, the thread will stall.

UThread 1:
(1) L.D F0, 0(R1)
(2) L.D F2, 8(R1)
(3) ADD.D F4, F0, F2
(4) SUB.D F6, F2, F0
(5) S.D F4, 16(R1)
(6) S.D F6, 24(R1)
(7) DSUBUI R1, R1, #32
(8) BNEZ R1, loop

Dependences:
(1) à (3) 3 cycles
(2) à (3) 3 cycles
(3) à (5) 1 cycle
(4) à (6) 1 cycle
(7) à (8) 0 cycles

UThread 2:

(1) DADDUI R1, R1, #24
(2) ADD.D F2, F0, F4
(3) ADD.D F4, F6, F8
(4) ADD.D F6, F0, F6
(5) S.D F2, -24(R1)
(6) S.D F4, -16(R1)
(7) S.D F6, -8(R1)
(8) BEQ R1, R7, end

Dependences:
(1) à (5) 0 cycles
(1) à (6) 0 cycles
(1) à (7) 0 cycles
(1) à (8) 0 cycles
(2) à (5) 1 cycle
(3) à (6) 1 cycle
(4) à (7) 1 cycle

UThread 3:

(1) L.D F6, 0(R1)
(2) ADD.D F8, F8, F6
(3) S.D F8, 8(R1)
(4) DADDUI R1, R1, #16
(5) BNE R1, R2, loop
(6) L.D F6, 0(R1)
(7) ADD.D F8, F8, F6
(8) S.D F8, 8(R1)
(9) DADDUI R1, R1, #16
(10) BNE R1, R2, loop

Dependences:
(1) à (2) 3 cycles
(2) à (3) 1 cycle
(4) à (5) 0 cycles
(4) à (6) 0 cycles
(6) à (7) 3 cycles
(7) à (8) 1 cycle
(9) à (10) 0 cycles

16.482/16.561: Computer Architecture & Design Instructor: M. Geiger
Summer 2015 Homework 6 Solution

1. (25 points) Determine how long the code will take using fine-grained multithreading. Assume
the processor uses in-order scheduling.

In fine-grained multithreading, we alternate threads every cycle. This technique takes 18 cycles
to execute all three threads.

Cycle ALU1 ALU2 ALU3 Mem1 Mem2 Branch
1 T1: L.D T1: L.D
2 T2: DADDUI T2: ADD.D T2: ADD.D
3 T3: L.D
4 T2: ADD.D T2: S.D T2: S.D
5 T1: ADD.D T1: SUB.D
6 T2: S.D T2: BEQ
7 T3: ADD.D
8 T1: DSUBUI T1: S.D T1:S.D
9 T3: DADDUI T3: S.D

10 T1: BNEZ
11 T3: L.D T3: BNE
12 T3 stall
13 T3 stall
14 T3 stall
15 T3: ADD.D
16 T3 stall
17 T3: DADDUI T3: S.D
18 T3: BNE

16.482/16.561: Computer Architecture & Design Instructor: M. Geiger
Summer 2015 Homework 6 Solution

2. (25 points) Determine how long the code will take using coarse-grained multithreading.
Assume the processor uses in-order scheduling, and switch threads on any stall longer than 1
cycle (stalls of 2 or more cycles).

In coarse-grained multithreading, we switch threads on any stall requiring more than 1 cycle—
namely, the three-cycle stalls in both Thread 1 and Thread 3. Note that, with this technique,
Thread 2 will run to completion without being switched out. However, we do have to be careful
when scheduling that thread, as there are dependences between the ADD.D and S.D instructions
that must be satisfied. Overall, coarse-grained and fine-grained multithreading perform similarly,
as the threads take a total of 21 cycles to complete.

Cycle ALU1 ALU2 ALU3 Mem1 Mem2 Branch

1 T1: L.D T1: L.D
2 T2: DADDUI T2: ADD.D T2: ADD.D
3 T2: ADD.D
4 T2: S.D T2: S.D
5 T2: S.D T2: BEQ
6 T3: L.D
7 T1: ADD.D T1: SUB.D
8 T1 stall
9 T1: DSUBUI T1: S.D T1:S.D

10 T1: BNEZ
11 T3: ADD.D
12 T3 stall
13 T3: DADDUI T3: S.D
14 T3: L.D T3: BNE
15 T3 stall
16 T3 stall
17 T3 stall
18 T3: ADD.D
19 T3 stall
20 T3: DADDUI T3: S.D
21 T3: BNE

16.482/16.561: Computer Architecture & Design Instructor: M. Geiger
Summer 2015 Homework 6 Solution

3. (25 points) Determine how long the code will take using simultaneous multithreading. Assume
the processor uses in-order scheduling, and that thread 1 is the preferred thread, followed by
threads 2 and 3.

Thread 1 is the preferred thread, followed by Threads 2 and 3. Simultaneous multithreading
allows for the best overall usage of functional units and takes only 16 cycles for all three threads
to complete.

Cycle ALU1 ALU2 ALU3 Mem1 Mem2 Branch
1 T2: DADDUI T2: ADD.D T2: ADD.D T1: L.D T1: L.D
2 T2: ADD.D T3: L.D
3 T2: S.D T2: S.D
4 T2: S.D T2: BEQ
5 T1: ADD.D T1: SUB.D
6 T3: ADD.D
7 T1: DSUBUI T1: S.D T1:S.D
8 T3: DADDUI T3: S.D T1: BNEZ
9 T3: L.D T3: BNE

10 T3 stall
11 T3 stall
12 T3 stall
13 T3: ADD.D
14 T3 stall
15 T3: DADDUI T3: S.D
16 T3: BNE

16.482/16.561: Computer Architecture & Design Instructor: M. Geiger
Summer 2015 Homework 6 Solution

4. (25 points) Determine how long the code will take using simultaneous threading if the
processor uses dynamic (out-of-order) scheduling. Assume that the processor can issue four
instructions per thread in each cycle, and that the order of preferred threads remains the same.

Let’s re-examine the threads and look at when each instruction is issued, and therefore how early
each one can execute. Keep in mind that the idea of out-of-order scheduling is to identify
instructions that can be issued without stalling behind instructions on which they do not depend:

UThread 1:

(1) L.D F0, 0(R1)
(2) L.D F2, 8(R1)
(3) ADD.D F4, F0, F2
(4) SUB.D F6, F2, F0
(5) S.D F4, 16(R1)
(6) S.D F6, 24(R1)
(7) DSUBUI R1, R1, #32
(8) BNEZ R1, loop

First cycle: Issue (1)-(4)
 Same dependences as original
Second cycle: Issue (5)-(8)

(7) independent of (1)-(6); can start as
early as cycle 2
(8) can start 1 cycle after (7)

UThread 2:

(1) DADDUI R1, R1, #24
(2) ADD.D F2, F0, F4
(3) ADD.D F4, F6, F8
(4) ADD.D F6, F0, F6
(5) S.D F2, -24(R1)
(6) S.D F4, -16(R1)
(7) S.D F6, -8(R1)
(8) BEQ R1, R7, end

First cycle: Issue (1)-(4)
 All independent
Second cycle: Issue (5)-(8)

(5)-(8) have same dependences as
original
(8) depends on (1) but not (2)-(7); can
start one cycle after (1)

UThread 3:

(1) L.D F6, 0(R1)
(2) ADD.D F8, F8, F6
(3) S.D F8, 8(R1)
(4) DADDUI R1, R1, #16
(5) BNE R1, R2, loop
(6) L.D F6, 0(R1)
(7) ADD.D F8, F8, F6
(8) S.D F8, 8(R1)
(9) DADDUI R1, R1, #16
(10) BNE R1, R2, loop

First cycle: Issue (1)-(4)
(1)-(3) have same dependences as
original
(4) independent of (1)-(3)

Second cycle: Issue (5)-(8)
 Same dependences as original
Third cycle: Issue (9)-(10)

(9) depends on (4), can start one cycle
later

16.482/16.561: Computer Architecture & Design Instructor: M. Geiger
Summer 2015 Homework 6 Solution

The list on the previous page shows that there aren’t many instructions that can be moved, but
they do have a significant impact on the overall performance, cutting the total execution time
down to 10 cycles.

The biggest impact is seen in Thread 3, where moving the first DADDUI instruction earlier
allows the second half of that thread to execute much sooner than it would otherwise. Note that
this thread essentially represents two iterations of a loop, so the example shows how multiple
issue can dramatically increase the performance benefit of dynamic scheduling with speculation.

Cycle ALU1 ALU2 ALU3 Mem1 Mem2 Branch
1 T2: DADDUI T2: ADD.D T2: ADD.D T1: L.D T1: L.D
2 T2: ADD.D T1: DSUBUI T3: DADDUI T3: L.D T2: BEQ
3 T3: DADDUI T2: S.D T2: S.D T1: BNEZ
4 T2: S.D T3: L.D T3: BNE
5 T1: ADD.D T1: SUB.D T3: BNE
6 T3: ADD.D
7 T1: S.D T1:S.D
8 T3: ADD.D T3: S.D
9 T3 stall

10 T3: S.D

