
16.482 / 16.561: Computer Architecture and Design
Summer 2015

Homework #5 Solution

1. Dynamic scheduling (30 points) Given the loop below:

DADDI R3, R0, #4
outer: DADDI R2, R1, #32
inner: L.D F0, 0(R1)

MULT.D F6, F0, F6
S.D F6, 8(R1)
DADDI R1, R1, #16
BNE R2, R1, inner
DADDI R3, R3, #-2
BNEZ R3, outer

Assume the following latencies:
• 1 cycle for DADDI, BNE, and BNEZ
• 3 cycles (1 EX, 2 MEM) for L.D and S.D
• 4 cycles for MULT.D

How long would this nested loop take without speculation? Remember, without
speculation, you cannot fetch past a branch until the outcome of the branch is known.

Solution: First of all, note that there should be a total of 2 outer loop iterations (R3 = 4 at
the start and is decremented by 2 every iteration; the loop ends when R2 = 0), and every
outer loop iteration contains 2 inner loop iterations (R2 = R1 + 32; R1 is incremented by
16 every iteration, and the loop ends when R1 = R2, regardless of what the initial value
of R1 is).

Your answer will depend on when exactly the branch is resolved, but assume you don’t
know until the end of the EX stages. In that case, the answer, as shown in the attached
pipeline diagram, is 39 cycles.

2. Speculation (30 points) How many cycles will the sequence in Question 1 take if we
do allow speculation and assume every branch prediction—including the predicted
target from the BTB—is correct?

Solution: Allowing speculation removes the fetch stall cycles; as shown in the diagram,
there are 10 such cycles in the loop. However, some instructions must wait to commit, a
problem not present in part (a). As shown in the diagram, the loop takes 36 cycles with
speculation and perfect branch prediction.

Pipeline diagram for HW 5, question 1
IF = Instruction fetch, IS = Issue, EX = Execute, M = Memory, WB = Write back (complete)
Stalls due to RAW hazards shown in red; fetch stalls due to unresolved branches shown in blue

Outer Inner
iteration iteration

DADDI R3,R0,#4 IF IS EX WB
1 outer: DADDI R2,R1,#32 IF IS EX WB
1 1 inner: L.D F0,0(R1) IF IS EX M M WB
1 1 MULT.D F6, F0, F6 IF IS S S EX EX EX EX WB
1 1 S.D F6,8(R1) IF IS EX S S S S M M
1 1 DADDI R1,R1,#16 IF IS EX WB
1 1 BNE R2,R1,inner IF IS EX
1 2 inner: L.D F0,0(R1) S S IF IS EX M M WB
1 2 MULT.D F6, F0, F6 IF IS S S EX EX EX EX WB
1 2 S.D F6,8(R1) IF IS EX S S S S M M
1 2 DADDI R1,R1,#16 IF IS EX WB
1 2 BNE R2,R1,inner IF IS EX
1 DADDI R3,R3,#-2 S S IF IS EX WB
1 BNEZ R3,outer IF IS EX
2 outer: DADDI R2,R1,#32 S S IF IS EX WB
2 1 inner: L.D F0,0(R1) IF IS EX M M WB
2 1 MULT.D F6, F0, F6 IF IS S S EX EX EX EX WB
2 1 S.D F6,8(R1) IF IS EX S S S S M M
2 1 DADDI R1,R1,#16 IF IS EX WB
2 1 BNE R2,R1,inner IF IS EX
2 2 inner: L.D F0,0(R1) S S IF IS EX M M WB
2 2 MULT.D F6, F0, F6 IF IS S S EX EX EX EX WB
2 2 S.D F6,8(R1) IF IS EX S S S S M M
2 2 DADDI R1,R1,#16 IF IS EX WB
2 2 BNE R2,R1,inner IF IS EX
2 DADDI R3,R3,#-2 S S IF IS EX WB
2 BNEZ R3,outer IF IS EX

24 256 7 8 16 17 18119Instruction 1 2 3 4 5 10 2312 13 14 15 22 33 36 37 3819 20 21 26 27 28 32 3929 30 31 32 33 34 3534

Pipeline diagram for HW 5, question 2
IF = Instruction fetch, IS = Issue, EX = Execute, M = Memory, WB = Write back (complete), C = Commit
Stalls due to RAW hazards shown in red

Outer Inner
iteration iteration

DADDI R3,R0,#4 IF IS EX WB C
1 outer: DADDI R2,R1,#32 IF IS EX WB C
1 1 inner: L.D F0,0(R1) IF IS EX M M WB C
1 1 MULT.D F6, F0, F6 IF IS S S EX EX EX EX WB C
1 1 S.D F6,8(R1) IF IS EX S S S S M M C
1 1 DADDI R1,R1,#16 IF IS EX WB C
1 1 BNE R2,R1,inner IF IS EX C
1 2 inner: L.D F0,0(R1) IF IS EX M M WB C
1 2 MULT.D F6, F0, F6 IF IS S S EX EX EX EX WB C
1 2 S.D F6,8(R1) IF IS EX S S S S M M C
1 2 DADDI R1,R1,#16 IF IS EX WB C
1 2 BNE R2,R1,inner IF IS EX C
1 DADDI R3,R3,#-2 IF IS EX WB C
1 BNEZ R3,outer IF IS EX C
2 outer: DADDI R2,R1,#32 IF IS EX WB C
2 1 inner: L.D F0,0(R1) IF IS EX M M WB C
2 1 MULT.D F6, F0, F6 IF IS S S EX EX EX EX WB C
2 1 S.D F6,8(R1) IF IS EX S S S S M M C
2 1 DADDI R1,R1,#16 IF IS EX WB C
2 1 BNE R2,R1,inner IF IS EX C
2 2 inner: L.D F0,0(R1) IF IS EX M M WB C
2 2 MULT.D F6, F0, F6 IF IS S S EX EX EX EX WB C
2 2 S.D F6,8(R1) IF IS EX S S S S M M C
2 2 DADDI R1,R1,#16 IF IS EX WB C
2 2 BNE R2,R1,inner IF IS EX C
2 DADDI R3,R3,#-2 IF IS EX WB C
2 BNEZ R3,outer IF IS EX C

329 10 35 3626 27 28 29 341 2 3 4 5 2412 13 14Instruction 31 32156 11 2516 17 20 337 8 1918 3021 22 23 33

3. Speculation & branch prediction (40 points) Now, assume the processor has a 2-bit
BHT to predict branch outcomes. On a mispredicted branch, the correct instructions
are fetched starting with the cycle after the misprediction is recognized (EX). Assume
that all BHT entries are initially equal to 00, and that the two branches in this
example use separate BHT entries. Also, assume the BTB correctly predicts all
targets for taken branches. How long will the loop in Question 1 now take?

Solution: Once again, the pipeline diagram is attached. Note that, with a mispredicted
branch, incorrect instructions are fetched until the branch is resolved in the EX stage. In
two cases, we actually have incorrectly fetched branches that access the BHT (shown in
red in the table below), but they do not affect the operation of the program.

Branch Prediction Actual Updated BHT
entry

Cycle updated

BNE NT T 01 9
BNEZ NT T -- Branch is squashed before

updating BHT
BNE NT NT 00 16
BNEZ NT T 01 18
BNE NT T 01 26
BNEZ NT NT -- Branch is squashed before

updating BHT
BNE NT NT 00 33
BNEZ NT NT 00 35

Also, note that we don't actually know the instructions to be executed after the
mispredicted BNEZ; those instructions are indicated using question marks in the pipeline
diagram.

We can see that the code takes 42 cycles to execute.

Pipeline diagram for HW 5, question 3
IF = Instruction fetch, IS = Issue, EX = Execute, M = Memory, WB = Write back (complete), C = Commit
Stalls due to RAW hazards shown in red
Mispredicted branches and incorrectly fetched instructions (and the associated squashed operations) are marked in blue

Outer Inner
iteration iteration

DADDI R3,R0,#4 IF IS EX WB C
1 outer: DADDI R2,R1,#32 IF IS EX WB C
1 1 inner: L.D F0,0(R1) IF IS EX M M WB C
1 1 MULT.D F6, F0, F6 IF IS S S EX EX EX EX WB C
1 1 S.D F6,8(R1) IF IS EX S S S S M M C
1 1 DADDI R1,R1,#16 IF IS EX WB C
1 1 BNE R2,R1,inner IF IS EX C
1 DADDI R3,R3,#-2 IF IS
1 BNEZ R3,outer IF
1 2 inner: L.D F0,0(R1) IF IS EX M M WB C
1 2 MULT.D F6, F0, F6 IF IS S S EX EX EX EX WB C
1 2 S.D F6,8(R1) IF IS EX S S S S M M C
1 2 DADDI R1,R1,#16 IF IS EX WB C
1 2 BNE R2,R1,inner IF IS EX C
1 DADDI R3,R3,#-2 IF IS EX WB C
1 BNEZ R3,outer IF IS EX C
? ?? IF IS
? ?? IF
2 outer: DADDI R2,R1,#32 IF IS EX WB C
2 1 inner: L.D F0,0(R1) IF IS EX M M WB C
2 1 MULT.D F6, F0, F6 IF IS S S EX EX EX EX WB C
2 1 S.D F6,8(R1) IF IS EX S S S S M M C
2 1 DADDI R1,R1,#16 IF IS EX WB C
2 1 BNE R2,R1,inner IF IS EX C
2 DADDI R3,R3,#-2 IF IS
2 BNEZ R3,outer IF
2 2 inner: L.D F0,0(R1) IF IS EX M M WB C
2 2 MULT.D F6, F0, F6 IF IS S S EX EX EX EX WB C
2 2 S.D F6,8(R1) IF IS EX S S S S M M C
2 2 DADDI R1,R1,#16 IF IS EX WB C
2 2 BNE R2,R1,inner IF IS EX C
2 DADDI R3,R3,#-2 IF IS EX WB C
2 BNEZ R3,outer IF IS EX C

42Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

4. Multithreading (50 points) Given the three threads shown below, determine how long
they take to execute using (a) fine-grained multithreading, (b) coarse-grained
multithreading, and (c) simultaneous multithreading.

For coarse-grained multithreading, switch threads on any stall longer than 1 cycle. (Note
that you must determine the number of stall cycles based on dependences between
instructions.) For simultaneous multithreading, treat thread 1 as the preferred thread,
followed by thread 2 and thread 3.

Assume you are using a processor with the following characteristics:

• 6 functional units: 3 ALUs, 2 memory ports (load/store), 1 branch
• In-order execution
• The following instruction latencies:

o L.D/S.D: 4 cycles (1 EX, 3 MEM)
o ADD.D/SUB.D: 2 cycles
o All other operations: 1 cycle

Thread 1:
L.D F0, 0(R1)
L.D F2, 8(R1)
ADD.D F4, F0, F2
SUB.D F6, F2, F0
S.D F4, 16(R1)
S.D F6, 24(R1)
DSUBUI R1, R1, #32
BNEZ R1, loop

Thread 2:
DADDUI R1, R1, #24
ADD.D F2, F0, F4
ADD.D F4, F6, F8
ADD.D F6, F0, F6
S.D F2, -24(R1)
S.D F4, -16(R1)
S.D F6, -8(R1)
BEQ R1, R7, end

Thread 3:
L.D F6, 0(R1)
ADD.D F8, F8, F6
S.D F8, 8(R1)
DADDUI R1, R1, #16
BNE R1, R2, loop
L.D F6, 0(R1)
ADD.D F8, F8, F6
S.D F8, 8(R1)
DADDUI R1, R1, #16
BNE R1, R2, loop

Solution:U When dealing with these threads, the first step is really to identify the
dependences and the latency of the producing instructions. Doing so allows you to figure
out both what instructions are independent, and how many cycles are required between
dependent instructions.

Note that just writing the stalls as you normally would using in-order execution isn’t
sufficient. You may run into cases in which stalls that are hidden in a single issue
processor show up in multithreading (or any multiple issue machine, for that matter)
because you’re executing multiple instructions in each cycle.

The breakdown starts on the next page. Note that each instruction has been numbered to
make it easier to list the dependences. The number of cycles shown after each
dependence is the number of cycles required between the producing and consuming
instructions. If no other instructions are available during this time, the thread will stall.

Instructor: M. Geiger 16.482/16.561: Computer Architecture & Design
Summer 2015 Homework 5 Solution

UThread 1:
(1) L.D F0, 0(R1)
(2) L.D F2, 8(R1)
(3) ADD.D F4, F0, F2
(4) SUB.D F6, F2, F0
(5) S.D F4, 16(R1)
(6) S.D F6, 24(R1)
(7) DSUBUI R1, R1, #32
(8) BNEZ R1, loop

Dependences:
(1)  (3) 3 cycles
(2)  (3) 3 cycles
(3)  (5) 1 cycle
(4)  (6) 1 cycle
(7)  (8) 0 cycles

UThread 2:
(1) DADDUI R1, R1, #24
(2) ADD.D F2, F0, F4
(3) ADD.D F4, F6, F8
(4) ADD.D F6, F0, F6
(5) S.D F2, -24(R1)
(6) S.D F4, -16(R1)
(7) S.D F6, -8(R1)
(8) BEQ R1, R7, end

Dependences:
(1)  (5) 0 cycles
(1)  (6) 0 cycles
(1)  (7) 0 cycles
(1)  (8) 0 cycles
(2)  (5) 1 cycle
(3)  (6) 1 cycle
(4)  (7) 1 cycle

UThread 3:
(1) L.D F6, 0(R1)
(2) ADD.D F8, F8, F6
(3) S.D F8, 8(R1)
(4) DADDUI R1, R1, #16
(5) BNE R1, R2, loop
(6) L.D F6, 0(R1)
(7) ADD.D F8, F8, F6
(8) S.D F8, 8(R1)
(9) DADDUI R1, R1, #16
(10) BNE R1, R2, loop

Dependences:
(1)  (2) 3 cycles
(2)  (3) 1 cycle
(4)  (5) 0 cycles
(4)  (6) 0 cycles
(6)  (7) 3 cycles
(7)  (8) 1 cycle
(9)  (10) 0 cycles

16.482/16.561: Computer Architecture & Design Instructor: M. Geiger
Fall 2013 Homework 5 Solution

We can now considering the scheduling of these threads under each multithreading
scheme, starting with (a) fine-grained multithreading, in which we alternate threads
every cycle. This technique takes 20 cycles to execute all three threads.

Cycle ALU1 ALU2 ALU3 Mem1 Mem2 Branch
1 T1: L.D T1: L.D
2 T2: DADDUI T2: ADD.D T2: ADD.D
3 T3: L.D
4 T1 stall
5 T2: ADD.D T2: S.D T2: S.D
6 T3 stall
7 T1: ADD.D T1: SUB.D
8 T2: S.D T2: BEQ
9 T3: ADD.D
10 T1: DSUBUI T1: S.D T1:S.D
11 T3: DADDUI T3: S.D
12 T1: BNEZ
13 T3: L.D T3: BNE
14 T3 stall
15 T3 stall
16 T3 stall
17 T3: ADD.D
18 T3 stall
19 T3: DADDUI T3: S.D
20 T3: BNE

16.482/16.561: Computer Architecture & Design Instructor: M. Geiger
Fall 2013 Homework 5 Solution

Next, (b) coarse-grained multithreading, where we switch threads on any stall requiring
more than 1 cycle—namely, the three-cycle stalls in both Thread 1 and Thread 3. Note
that, with this technique, Thread 2 will run to completion without being switched out.
However, we do have to be careful when scheduling that thread, as there are
dependences between the ADD.D and S.D instructions that must be satisfied. Overall,
coarse-grained and fine-grained multithreading perform similarly, as the threads take a
total of 21 cycles to complete.

Cycle ALU1 ALU2 ALU3 Mem1 Mem2 Branch
1 T1: L.D T1: L.D
2 T2: DADDUI T2: ADD.D T2: ADD.D
3 T2: ADD.D
4 T2: S.D T2: S.D
5 T2: S.D T2: BEQ
6 T3: L.D
7 T1: ADD.D T1: SUB.D
8 T1 stall
9 T1: DSUBUI T1: S.D T1:S.D
10 T1: BNEZ
11 T3: ADD.D
12 T3 stall
13 T3: DADDUI T3: S.D
14 T3: L.D T3: BNE
15 T3 stall
16 T3 stall
17 T3 stall
18 T3: ADD.D
19 T3 stall
20 T3: DADDUI T3: S.D
21 T3: BNE

Instructor: M. Geiger 16.482/16.561: Computer Architecture & Design
Summer 2015 Homework 5 Solution

Our last technique is (c) simultaneous multithreading. Thread 1 is the preferred thread,
followed by Threads 2 and 3. This method allows for the best overall usage of functional
units and takes only 16 cycles for all three threads to complete.

Cycle ALU1 ALU2 ALU3 Mem1 Mem2 Branch
1 T2: DADDUI T2: ADD.D T2: ADD.D T1: L.D T1: L.D
2 T2: ADD.D T3: L.D
3 T2: S.D T2: S.D
4 T2: S.D T2: BEQ
5 T1: ADD.D T1: SUB.D
6 T3: ADD.D
7 T1: DSUBUI T1: S.D T1:S.D
8 T3: DADDUI T3: S.D T1: BNEZ
9 T3: L.D T3: BNE
10 T3 stall
11 T3 stall
12 T3 stall
13 T3: ADD.D
14 T3 stall
15 T3: DADDUI T3: S.D
16 T3: BNE

	compArchf13_hw5soln_text_1
	compArchf13_hw5soln_text

	compArchf13_hw5soln_pipelines_1
	compArchf13_hw5soln_pipelines
	Question 1
	Question 2
	Question 3

	compArchf13_hw5soln_text_2
	compArchf13_hw5soln_text

	compArchf13_hw5soln_pipelines
	compArchf13_hw5soln_pipelines
	Question 1
	Question 2
	Question 3

	compArchf13_hw5soln_text
	compArchf13_hw5soln_text

