
16.482 / 16.561: Computer Architecture and Design 
Summer 2015 

Homework #5 Solution 

1. Dynamic scheduling (30 points) Given the loop below:

DADDI R3, R0, #4 
outer: DADDI R2, R1, #32 
inner: L.D F0, 0(R1) 

MULT.D F6, F0, F6 
S.D F6, 8(R1) 
DADDI R1, R1, #16 
BNE R2, R1, inner 
DADDI R3, R3, #-2 
BNEZ R3, outer  

Assume the following latencies: 
• 1 cycle for DADDI, BNE, and BNEZ
• 3 cycles (1 EX, 2 MEM) for L.D and S.D
• 4 cycles for MULT.D

How long would this nested loop take without speculation? Remember, without 
speculation, you cannot fetch past a branch until the outcome of the branch is known. 

Solution: First of all, note that there should be a total of 2 outer loop iterations (R3 = 4 at 
the start and is decremented by 2 every iteration; the loop ends when R2 = 0), and every 
outer loop iteration contains 2 inner loop iterations (R2 = R1 + 32; R1 is incremented by 
16 every iteration, and the loop ends when R1 = R2, regardless of what the initial value 
of R1 is). 

Your answer will depend on when exactly the branch is resolved, but assume you don’t 
know until the end of the EX stages.  In that case, the answer, as shown in the attached 
pipeline diagram, is 39 cycles. 

2. Speculation (30 points) How many cycles will the sequence in Question 1 take if we
do allow speculation and assume every branch prediction—including the predicted
target from the BTB—is correct?

Solution: Allowing speculation removes the fetch stall cycles; as shown in the diagram, 
there are 10 such cycles in the loop. However, some instructions must wait to commit, a 
problem not present in part (a). As shown in the diagram, the loop takes 36 cycles with 
speculation and perfect branch prediction. 



Pipeline diagram for HW 5, question 1
IF = Instruction fetch, IS = Issue, EX = Execute, M = Memory, WB = Write back (complete)
Stalls due to RAW hazards shown in red; fetch stalls due to unresolved branches shown in blue

Outer Inner
iteration iteration

DADDI R3,R0,#4 IF IS EX WB
1 outer: DADDI R2,R1,#32 IF IS EX WB
1 1 inner: L.D F0,0(R1) IF IS EX M M WB
1 1 MULT.D F6, F0, F6 IF IS S S EX EX EX EX WB
1 1 S.D F6,8(R1) IF IS EX S S S S M M
1 1 DADDI R1,R1,#16 IF IS EX WB
1 1 BNE R2,R1,inner IF IS EX
1 2 inner: L.D F0,0(R1) S S IF IS EX M M WB
1 2 MULT.D F6, F0, F6 IF IS S S EX EX EX EX WB
1 2 S.D F6,8(R1) IF IS EX S S S S M M
1 2 DADDI R1,R1,#16 IF IS EX WB
1 2 BNE R2,R1,inner IF IS EX
1 DADDI R3,R3,#-2 S S IF IS EX WB
1 BNEZ R3,outer IF IS EX
2 outer: DADDI R2,R1,#32 S S IF IS EX WB
2 1 inner: L.D F0,0(R1) IF IS EX M M WB
2 1 MULT.D F6, F0, F6 IF IS S S EX EX EX EX WB
2 1 S.D F6,8(R1) IF IS EX S S S S M M
2 1 DADDI R1,R1,#16 IF IS EX WB
2 1 BNE R2,R1,inner IF IS EX
2 2 inner: L.D F0,0(R1) S S IF IS EX M M WB
2 2 MULT.D F6, F0, F6 IF IS S S EX EX EX EX WB
2 2 S.D F6,8(R1) IF IS EX S S S S M M
2 2 DADDI R1,R1,#16 IF IS EX WB
2 2 BNE R2,R1,inner IF IS EX
2 DADDI R3,R3,#-2 S S IF IS EX WB
2 BNEZ R3,outer IF IS EX
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Pipeline diagram for HW 5, question 2
IF = Instruction fetch, IS = Issue, EX = Execute, M = Memory, WB = Write back (complete), C = Commit
Stalls due to RAW hazards shown in red

Outer Inner
iteration iteration

DADDI R3,R0,#4 IF IS EX WB C
1 outer: DADDI R2,R1,#32 IF IS EX WB C
1 1 inner: L.D F0,0(R1) IF IS EX M M WB C
1 1 MULT.D F6, F0, F6 IF IS S S EX EX EX EX WB C
1 1 S.D F6,8(R1) IF IS EX S S S S M M C
1 1 DADDI R1,R1,#16 IF IS EX WB C
1 1 BNE R2,R1,inner IF IS EX C
1 2 inner: L.D F0,0(R1) IF IS EX M M WB C
1 2 MULT.D F6, F0, F6 IF IS S S EX EX EX EX WB C
1 2 S.D F6,8(R1) IF IS EX S S S S M M C
1 2 DADDI R1,R1,#16 IF IS EX WB C
1 2 BNE R2,R1,inner IF IS EX C
1 DADDI R3,R3,#-2 IF IS EX WB C
1 BNEZ R3,outer IF IS EX C
2 outer: DADDI R2,R1,#32 IF IS EX WB C
2 1 inner: L.D F0,0(R1) IF IS EX M M WB C
2 1 MULT.D F6, F0, F6 IF IS S S EX EX EX EX WB C
2 1 S.D F6,8(R1) IF IS EX S S S S M M C
2 1 DADDI R1,R1,#16 IF IS EX WB C
2 1 BNE R2,R1,inner IF IS EX C
2 2 inner: L.D F0,0(R1) IF IS EX M M WB C
2 2 MULT.D F6, F0, F6 IF IS S S EX EX EX EX WB C
2 2 S.D F6,8(R1) IF IS EX S S S S M M C
2 2 DADDI R1,R1,#16 IF IS EX WB C
2 2 BNE R2,R1,inner IF IS EX C
2 DADDI R3,R3,#-2 IF IS EX WB C
2 BNEZ R3,outer IF IS EX C
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3. Speculation & branch prediction (40 points) Now, assume the processor has a 2-bit
BHT to predict branch outcomes. On a mispredicted branch, the correct instructions
are fetched starting with the cycle after the misprediction is recognized (EX). Assume
that all BHT entries are initially equal to 00, and that the two branches in this
example use separate BHT entries. Also, assume the BTB correctly predicts all
targets for taken branches. How long will the loop in Question 1 now take?

Solution: Once again, the pipeline diagram is attached. Note that, with a mispredicted 
branch, incorrect instructions are fetched until the branch is resolved in the EX stage. In 
two cases, we actually have incorrectly fetched branches that access the BHT (shown in 
red in the table below), but they do not affect the operation of the program.  

Branch Prediction Actual Updated BHT 
entry 

Cycle updated 

BNE NT T 01 9 
BNEZ NT T -- Branch is squashed before 

updating BHT 
BNE NT NT 00 16 
BNEZ NT T 01 18 
BNE NT T 01 26 
BNEZ NT NT -- Branch is squashed before 

updating BHT 
BNE NT NT 00 33 
BNEZ NT NT 00 35 

Also, note that we don't actually know the instructions to be executed after the 
mispredicted BNEZ; those instructions are indicated using question marks in the pipeline 
diagram. 

We can see that the code takes 42 cycles to execute. 



Pipeline diagram for HW 5, question 3
IF = Instruction fetch, IS = Issue, EX = Execute, M = Memory, WB = Write back (complete), C = Commit
Stalls due to RAW hazards shown in red
Mispredicted branches and incorrectly fetched instructions (and the associated squashed operations) are marked in blue

Outer Inner
iteration iteration

DADDI R3,R0,#4 IF IS EX WB C
1 outer: DADDI R2,R1,#32 IF IS EX WB C
1 1 inner: L.D F0,0(R1) IF IS EX M M WB C
1 1 MULT.D F6, F0, F6 IF IS S S EX EX EX EX WB C
1 1 S.D F6,8(R1) IF IS EX S S S S M M C
1 1 DADDI R1,R1,#16 IF IS EX WB C
1 1 BNE R2,R1,inner IF IS EX C
1 DADDI R3,R3,#-2 IF IS
1 BNEZ R3,outer IF
1 2 inner: L.D F0,0(R1) IF IS EX M M WB C
1 2 MULT.D F6, F0, F6 IF IS S S EX EX EX EX WB C
1 2 S.D F6,8(R1) IF IS EX S S S S M M C
1 2 DADDI R1,R1,#16 IF IS EX WB C
1 2 BNE R2,R1,inner IF IS EX C
1 DADDI R3,R3,#-2 IF IS EX WB C
1 BNEZ R3,outer IF IS EX C
? ?? IF IS
? ?? IF
2 outer: DADDI R2,R1,#32 IF IS EX WB C
2 1 inner: L.D F0,0(R1) IF IS EX M M WB C
2 1 MULT.D F6, F0, F6 IF IS S S EX EX EX EX WB C
2 1 S.D F6,8(R1) IF IS EX S S S S M M C
2 1 DADDI R1,R1,#16 IF IS EX WB C
2 1 BNE R2,R1,inner IF IS EX C
2 DADDI R3,R3,#-2 IF IS
2 BNEZ R3,outer IF
2 2 inner: L.D F0,0(R1) IF IS EX M M WB C
2 2 MULT.D F6, F0, F6 IF IS S S EX EX EX EX WB C
2 2 S.D F6,8(R1) IF IS EX S S S S M M C
2 2 DADDI R1,R1,#16 IF IS EX WB C
2 2 BNE R2,R1,inner IF IS EX C
2 DADDI R3,R3,#-2 IF IS EX WB C
2 BNEZ R3,outer IF IS EX C

42Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41



4. Multithreading (50 points) Given the three threads shown below, determine how long 
they take to execute using (a) fine-grained multithreading, (b) coarse-grained 
multithreading, and (c) simultaneous multithreading.  
 
For coarse-grained multithreading, switch threads on any stall longer than 1 cycle. (Note 
that you must determine the number of stall cycles based on dependences between 
instructions.) For simultaneous multithreading, treat thread 1 as the preferred thread, 
followed by thread 2 and thread 3. 
 
Assume you are using a processor with the following characteristics: 
 

• 6 functional units: 3 ALUs, 2 memory ports (load/store), 1 branch 
• In-order execution 
• The following instruction latencies: 

o L.D/S.D: 4 cycles (1 EX, 3 MEM) 
o ADD.D/SUB.D: 2 cycles 
o All other operations: 1 cycle

Thread 1: 
L.D F0, 0(R1) 
L.D F2, 8(R1) 
ADD.D F4, F0, F2 
SUB.D F6, F2, F0 
S.D F4, 16(R1) 
S.D F6, 24(R1) 
DSUBUI R1, R1, #32 
BNEZ R1, loop 

Thread 2: 
DADDUI R1, R1, #24 
ADD.D F2, F0, F4 
ADD.D F4, F6, F8 
ADD.D F6, F0, F6 
S.D F2, -24(R1) 
S.D F4, -16(R1) 
S.D F6, -8(R1) 
BEQ R1, R7, end

Thread 3: 
L.D F6, 0(R1) 
ADD.D F8, F8, F6 
S.D F8, 8(R1) 
DADDUI R1, R1, #16 
BNE R1, R2, loop 
L.D F6, 0(R1) 
ADD.D F8, F8, F6 
S.D F8, 8(R1) 
DADDUI R1, R1, #16 
BNE R1, R2, loop 

 
Solution:U When dealing with these threads, the first step is really to identify the 
dependences and the latency of the producing instructions. Doing so allows you to figure 
out both what instructions are independent, and how many cycles are required between 
dependent instructions. 
 
Note that just writing the stalls as you normally would using in-order execution isn’t 
sufficient. You may run into cases in which stalls that are hidden in a single issue 
processor show up in multithreading (or any multiple issue machine, for that matter) 
because you’re executing multiple instructions in each cycle. 
 
The breakdown starts on the next page. Note that each instruction has been numbered to 
make it easier to list the dependences. The number of cycles shown after each 
dependence is the number of cycles required between the producing and consuming 
instructions. If no other instructions are available during this time, the thread will stall. 
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UThread 1: 
(1) L.D F0, 0(R1) 
(2) L.D F2, 8(R1) 
(3) ADD.D F4, F0, F2 
(4) SUB.D F6, F2, F0 
(5) S.D F4, 16(R1) 
(6) S.D F6, 24(R1) 
(7) DSUBUI R1, R1, #32 
(8) BNEZ R1, loop 

Dependences: 
(1)  (3) 3 cycles 
(2)  (3) 3 cycles 
(3)  (5) 1 cycle 
(4)  (6) 1 cycle 
(7)  (8) 0 cycles 

UThread 2: 
(1) DADDUI R1, R1, #24 
(2) ADD.D F2, F0, F4 
(3) ADD.D F4, F6, F8 
(4) ADD.D F6, F0, F6 
(5) S.D F2, -24(R1) 
(6) S.D F4, -16(R1) 
(7) S.D F6, -8(R1) 
(8) BEQ R1, R7, end 

Dependences: 
(1)  (5) 0 cycles 
(1)  (6) 0 cycles 
(1)  (7) 0 cycles 
(1)  (8) 0 cycles 
(2)  (5) 1 cycle 
(3)  (6) 1 cycle 
(4)  (7) 1 cycle 

UThread 3: 
(1) L.D F6, 0(R1) 
(2) ADD.D F8, F8, F6 
(3) S.D F8, 8(R1) 
(4) DADDUI R1, R1, #16 
(5) BNE R1, R2, loop 
(6) L.D F6, 0(R1) 
(7) ADD.D F8, F8, F6 
(8) S.D F8, 8(R1) 
(9) DADDUI R1, R1, #16 
(10) BNE R1, R2, loop 

Dependences: 
(1)  (2) 3 cycles 
(2)  (3) 1 cycle 
(4)  (5) 0 cycles 
(4)  (6) 0 cycles 
(6)  (7) 3 cycles 
(7)  (8) 1 cycle 
(9)  (10)  0 cycles 
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We can now considering the scheduling of these threads under each multithreading 
scheme, starting with (a) fine-grained multithreading, in which we alternate threads 
every cycle. This technique takes 20 cycles to execute all three threads. 

Cycle ALU1 ALU2 ALU3 Mem1 Mem2 Branch 
1 T1: L.D T1: L.D 
2 T2: DADDUI T2: ADD.D T2: ADD.D 
3 T3: L.D 
4 T1 stall 
5 T2: ADD.D T2: S.D T2: S.D 
6 T3 stall 
7 T1: ADD.D T1: SUB.D 
8 T2: S.D T2: BEQ 
9 T3: ADD.D 
10 T1: DSUBUI T1: S.D T1:S.D 
11 T3: DADDUI T3: S.D 
12 T1: BNEZ 
13 T3: L.D T3: BNE 
14 T3 stall 
15 T3 stall 
16 T3 stall 
17 T3: ADD.D
18 T3 stall 
19 T3: DADDUI T3: S.D 
20 T3: BNE 
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Next, (b) coarse-grained multithreading, where we switch threads on any stall requiring 
more than 1 cycle—namely, the three-cycle stalls in both Thread 1 and Thread 3. Note 
that, with this technique, Thread 2 will run to completion without being switched out. 
However, we do have to be careful when scheduling that thread, as there are 
dependences between the ADD.D and S.D instructions that must be satisfied. Overall, 
coarse-grained and fine-grained multithreading perform similarly, as the threads take a 
total of 21 cycles to complete. 

Cycle ALU1 ALU2 ALU3 Mem1 Mem2 Branch 
1 T1: L.D T1: L.D 
2 T2: DADDUI T2: ADD.D T2: ADD.D 
3 T2: ADD.D 
4 T2: S.D T2: S.D 
5 T2: S.D T2: BEQ 
6 T3: L.D 
7 T1: ADD.D T1: SUB.D 
8 T1 stall 
9 T1: DSUBUI T1: S.D T1:S.D 
10 T1: BNEZ 
11 T3: ADD.D
12 T3 stall 
13 T3: DADDUI T3: S.D 
14 T3: L.D T3: BNE 
15 T3 stall 
16 T3 stall 
17 T3 stall 
18 T3: ADD.D
19 T3 stall 
20 T3: DADDUI T3: S.D 
21 T3: BNE 
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Our last technique is (c) simultaneous multithreading. Thread 1 is the preferred thread, 
followed by Threads 2 and 3. This method allows for the best overall usage of functional 
units and takes only 16 cycles for all three threads to complete. 

Cycle ALU1 ALU2 ALU3 Mem1 Mem2 Branch 
1 T2: DADDUI T2: ADD.D T2: ADD.D T1: L.D T1: L.D 
2 T2: ADD.D T3: L.D 
3 T2: S.D T2: S.D 
4 T2: S.D T2: BEQ 
5 T1: ADD.D T1: SUB.D 
6 T3: ADD.D 
7 T1: DSUBUI T1: S.D T1:S.D 
8 T3: DADDUI T3: S.D T1: BNEZ 
9 T3: L.D T3: BNE 
10 T3 stall 
11 T3 stall 
12 T3 stall 
13 T3: ADD.D
14 T3 stall 
15 T3: DADDUI T3: S.D 
16 T3: BNE 
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