16.482 / 16.561: Computer Architecture and Design Spring 2015

Homework #3 Due **Thursday**, 2/12/15

Notes:

- While typed submissions are preferred, handwritten submissions are acceptable.
- Any electronic submission must be in a single file. Archive files will not be accepted.
- Electronic submissions should be e-mailed to Dr. Geiger at Michael Geiger@uml.edu.
- This assignment is worth a total of 100 points.

Consider the following sequence of instructions:

loop:	add	\$t0,	\$t1, \$t2
	lw	\$t3,	10(\$t0)
	lw	\$t4,	14(\$t0)
	sub	\$t5,	\$t4, \$t3
	SW	\$t5,	18(\$t0)
	addi	\$t2,	\$t2, 4
	slti	\$t6,	\$t2, 200
	bne	\$t6,	\$zero, loop

Assume each datapath stage requires the following amount of time to complete:

- Instruction fetch (IF): 30 ns
- Instruction decode (ID): 20 ns
- Execute / address calculation (EX): 25 ns
- Memory access (MEM): 30 ns
- Register write back (WB): 20 ns
- 1. (20 points) How long will a single iteration of this loop take in a single-cycle datapath?
- 2. (20 points) If we assume ideal pipelining (i.e., no hazards and therefore no stalls), how long will one loop iteration take in a pipelined datapath?
- 3. (20 points) If we now assume a more realistic pipelined datapath **without** forwarding, how long will one iteration take? Show a revised code sequence that includes all necessary no-ops to support your answer.
- 4. (20 points) If we now assume a pipelined datapath **with** forwarding, how long will one iteration take?
- 5. (20 points) Calculate the speedup for each of the pipelined datapaths over the single-cycle case. In other words, determine how much faster each of the pipelined cases are than the single-cycle case.