
16.482 / 16.561: Computer Architecture and Design 
Summer 2015 

Homework #2 Solution 
 
1. (15 points) Show how the “refined multiply hardware” (slide #19 from Lec. 2) multiplies the 

8-bit values 88 and 45, using an approach similar to the one demonstrated in lecture. 

Solution: I’ll use 88 (which, as an 8-bit binary value, is 010110002) as the multiplicand and 45 
(001011012) as the multiplier in this example. Since we’re multiplying 8-bit values, we’ll have a 
16-bit product, and the algorithm will take 8 steps. 
Initially, product/multiplier = 0000000000101011 (underlined bit determines next step) 

Step 1: LSB of product/multiplier = 1 à add multiplicand into left half of register & shift right 
 0000000000101101 
     + 01011000 
 0101100000101101 

0010110000010110  ß Product/multiplier after shift 

Step 2: LSB = 0 à shift right 
0001011000001011  ß Product/multiplier after shift 

Step 3: LSB = 1 à add multiplicand into left half of register & shift right 
 0001011000001011 
     + 01011000 
 0110111000001011 

0011011100000101  ß Product/multiplier after shift 

Step 4: LSB = 1 à add multiplicand into left half of register & shift right 
 0011011100000101 
     + 01011000 
 1000111100000101 

0100011110000010  ß Product/multiplier after shift 

Step 5: LSB = 0 à shift right 
0010001111000001  ß Product/multiplier after shift 

Step 6: LSB = 1 à add multiplicand into left half of register & shift right 
 0010001111000001 
     + 01011000 
 0111101111000001 

0011110111100000  ß Product/multiplier after shift 

Step 7: LSB = 0 à shift right 
0001111011110000  ß Product/multiplier after shift 

Step 8: LSB = 0 à shift right 
00001111011110002 = 396010 ß Final result 
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2. (10 points) In class, we briefly discussed that the hardware methods presented cannot 
correctly handle signed multiplication. Describe a method that could correctly handle all 
multiplication of signed integers without increasing the size of the registers or adders used. 
(In other words, any other algorithm that adds extra bits while performing the actual 
multiplication—including Booth’s algorithm, for example—is not a valid solution.) 

 
Solution: Several possible solutions exist, but the easiest would be to handle integer 
multiplication almost the same way you handle floating point multiplication—multiply the 
magnitudes and figure out the correct sign when that’s done. Multiplier hardware that functions 
in this manner does need to invert any negative operand in order to get its magnitude before 
doing the multiplication. 
  
 
3. (25 points) Convert each of the following decimal values into single-precision IEEE floating-

point format. Show all steps, including how you calculate the fraction and biased exponent 
stored in the number. (Note: I encourage you to convert each result into hexadecimal, which 
will help ensure that your assignments are graded and returned relatively quickly!) 
 

a. -9.625 
 
Solution: With a negative value, when doing our conversion to binary, we work strictly with the 
magnitude—floating-point values don’t use 2’s complement form, so the sign and magnitude are 
stored separately. 
 
 9.625 = 1001.1012 = 1.001101 × 23 
 
Now, determine each of the fields in our single-precision floating-point value: 
 
 Sign = 1 (negative value) 
 Exponent = [actual exponent] + bias = 3 + 127 = 130 = 100000102 
 Fraction = 0011012 = 001 1010 0000 0000 0000 00002 (fraction is 23 bits) 
 
Therefore, as a single-precision floating-point value: 
 
 -9.625 = 1100 0001 0001 1010 0000 0000 0000 00002 = 0xC11A0000 
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b. 23 
 
We first need to convert this value to binary and then normalize it: 
 
 23 = 101112 = 1.0111 × 24 
 
We can directly determine each of the fields in our single-precision floating-point value: 
 
 Sign = 0 (positive value) 
 Exponent = [actual exponent] + bias = 4 + 127 = 131 = 100000112 
 Fraction = 01112 = 011 1000 0000 0000 0000 00002 (fraction is 23 bits) 
 
Therefore, as a single-precision floating-point value: 
 
 23 = 0100 0001 1011 1000 0000 0000 0000 00002 = 0x41B80000 
 
 
c. 0.921875 
 
Solution: Although it may be a little difficult to see at first, this value is a sum of powers of 2: 
0.921875 = 1/2 + 1/4 + 1/8 + 1/32 + 1/64 = 0.5 + 0.25 + 0.125 + 0.03125 + 0.015625. Therefore: 
 
 0.921875 = 0.1110112 = 1.11011 × 2-1 
 
Now, determine each of the fields in our single-precision floating-point value: 
 
 Sign = 0 (positive value) 
 Exponent = [actual exponent] + bias = -1 + 127 = 126 = 011111102 
 Fraction = 110112 = 110 1100 0000 0000 0000 00002 (fraction is 23 bits) 
 
Therefore, as a single-precision floating-point value: 
 
 0.921875 = 0011 1111 0110 1100 0000 0000 0000 0000 = 0x3F6C0000 
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d. -100.125 
 
Solution: We again start by converting this value to binary. Note that the fractional part is 1/8: 
 
 100.125 = 1100100.0012 = 1.100100001 × 26 
 
Now, determine each of the fields in our single-precision floating-point value: 
 
 Sign = 1 (negative value) 
 Exponent = [actual exponent] + bias = 6 + 127 = 133 = 100001012 
 Fraction = 1001000012 = 100 1000 0100 0000 0000 00002 (fraction is 23 bits) 
 
Therefore, as a single-precision floating-point value: 
 
 -100.125 = 1100 0010 1100 1000 0100 0000 0000 0000 = 0xC2C84000 
 
 
e. 2.05 (determine the closest approximation you can) 
 
Solution: While the whole part of this value is a power of 2 (21), the fractional part can’t be 
exactly represented. The closest approximation we get with a 23-bit fraction is: 
 
 2.05 ≈ 10.00001100110011001100112  = 1.000001100110011001100112  × 21 
 
Now, determine each of the fields in our single-precision floating-point value: 
 
 Sign = 0 (positive value) 
 Exponent = [actual exponent] + bias = 1 + 127 = 128 = 100000002 
 Fraction = 000 0011 0011 0011 0011 00112 (fraction is 23 bits) 
 
Therefore, as a single-precision floating-point value: 
 
 2.05 = 0100 0000 0000 0011 0011 0011 0011 0011= 0x40033333 
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4. (25 points) Convert each of the following IEEE single-precision floating-point values into 
decimal values. Show all steps of your work. 
 

a. 0x40540000 
 
Solution: In all cases, we break the value given into the three fields of a single-precision 
floating-point value: sign (1 bit), biased exponent (8 bits), and fraction (23 bits): 
 

0x40540000 = 0100 0000 0101 0100 0000 0000 0000 00002 
 
Sign = 0 (positive value) 
Biased exponent = 100000002 = 128 

à Actual exponent = [Biased exponent] – bias = 128 – 127 = 1 
Fraction = 101 0100 0000 0000 0000 00002 = 101012 

 
We can then write the magnitude as a normalized binary number, shift it into a binary form that 
is not normalized, and convert to decimal: 
 
 1.101012 × 21 = 11.01012 = 3.3125 
 
Therefore, the single-precision floating-point value 0x40540000 represents the decimal value 
3.3125. 
 
 
b. 0xbfb00000 
 
Solution: 0xbfb00000 = 1011 1111 1011 0000 0000 0000 0000 00002 

 
Sign = 1 (negative value) 
Biased exponent = 011111112 = 127  

à Actual exponent = [Biased exponent] – bias = 127 – 127 = 0 
Fraction = 011 0000 0000 0000 0000 00002 = 0112 

 
We can then write the magnitude as a normalized binary number, shift it into a binary form that 
is not normalized, and convert to decimal: 
 
 1.0112 × 20 = 1.375 
 
Therefore, the single-precision floating-point value 0xbfb00000 represents the decimal value  
-1.375. 
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c. 0x3f538000 
 

Solution: 0x3f5380000 = 0011 1111 0101 0011 1000 0000 0000 00002 
 
Sign = 0 (positive value) 
Biased exponent = 011111102 = 126  

à Actual exponent = [Biased exponent] – bias = 126 – 127 = -1 
Fraction = 101 0011 1000 0000 0000 00002 = 101001112 

 
We can then write the magnitude as a normalized binary number, shift it into a binary form that 
is not normalized, and convert to decimal: 
 
 1.10100112 × 2-1 = 0.110100112 = 0.8261719 
 
Therefore, the single-precision floating-point value 0x3f538000 represents the decimal value 
0.8261719. 
 
 
d. 0xc2060000 
 
Solution: 0xc2060000 = 1100 0010 0000 0110 0000 0000 0000 00002 

 
Sign = 1 (negative value) 
Biased exponent = 100001002 = 132 

à Actual exponent = [Biased exponent] – bias = 132 – 127 = 5 
Fraction = 000 0110 0000 0000 0000 00002 = 0000112 

 
We can then write the magnitude as a normalized binary number, shift it into a binary form that 
is not normalized, and convert to decimal: 
 
 1.0000112 × 25 = 100001.12 = 33.5 
 
Therefore, the single-precision floating-point value 0xc2060000 represents the decimal value  
-33.5. 
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e. 0xaabbccdd (determine the closest approximation you can) 
 
Solution: 0xaabbccdd = 1010 1010 1011 1011 1100 1100 1101 11012 

 
Sign = 1 (negative value) 
Biased exponent = 010101012 = 85  

à Actual exponent = [Biased exponent] – bias = 85 – 127 = -42 
Fraction = 011 1011 1100 1100 1101 11012 

 
We can then write the magnitude as a normalized binary number, shift it into a binary form that 
is not normalized, and convert to decimal. Note that, with so many bits in the fraction, I’m 
simply looking for an approximation: 
 
 1.011 1011 1100 1100 1101 11012 × 2-42 ≈ 3.3360025 × 10-13 
 
Therefore, the single-precision floating-point value 0xaabbccdd approximates the decimal value 
-3.3360025 × 10-13. 
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5. (25 points) Compute the result of each floating-point arithmetic arithmetic operation below, 
in which each of the values is encoded in single-precision IEEE floating-point format. Recall 
that: 

• For floating-point addition, align the binary points, add the significands, then normalize 
the result. 

• For floating-point multiplication, add the exponents (taking care to only account for the 
bias once), multiply the significands, normalize the result, and then determine the sign. 

All arithmetic should be done in binary, and results should be re-encoded in single-precision 
IEEE floating-point format. 
 
a. 0x41e00000 + 0x42280000 
 
Solution: Operands are as follows (I’m assuming you can handle the conversions without seeing 
all the steps): 
 
0x41e00000 = 1.112 × 24 (2810) 
0x42280000 = 1.01012 × 25  (4210) 
 
To add these numbers: 
 

• Align binary points by shifting number with smaller exponent: 
o 1.112 × 24 = 0.1112 × 25 

• Add significands: 
o 1.01012 + 0.1112 = 10.00112 

• Renormalize if necessary 
o 10.00112 × 25 = 1.00011 × 26 

• Final result = 1.000112 × 26 = 0x428c0000 in single-precision format = 7010 
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b. 0x40b80000 * 0x40500000 
 
Solution: Operands are as follows: 
 
0x40b80000 = 1.01112 × 22  (5.7510) 
0x40500000 = 1.1012 × 21  (3.2510) 
 
To multiply these numbers: 

• Add the exponents to get the final exponent: 
o 2 + 1 = 3 

• Multiply significands: 
o 1.01112 * 1.1012 = 10.01010112 

• Renormalize if necessary 
o 10.01010112 × 23 = 1.001010112 × 24 

• Determine sign 
o Product of two positive values is positive à sign bit = 0 

• Final result = 1.001010112 × 24 = 0x41958000 in single-precision format = 18.687510 
 
 
c. 0xc1280000 + 0xc2308000 
 
Solution: Operands are as follows: 
 
0xc1280000 = -1.01012 × 23   (-10.510) 
0xc23080000 = -1.011000012 × 25 (-44.12510) 
 
To add these numbers: 
 

• Align binary points by shifting number with smaller exponent: 
o -1.01012 × 23 = -0.0101012 × 25 

• Add significands: 
o (-0.010101)2 + (-1.01100001)2  = -1.101101012 

• Renormalize if necessary (not necessary in this case) 
 
Final result = -1.101101012 × 25 = 0xc25a8000 in single-precision format = -54.62510 
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d. 0x41240000 * 0xc1110000 
 
Solution: Operands are as follows: 
 
0x41240000 = 1.010012 × 23   (10.2510) 
0xc1110000 = -1.00100012 × 23  (-9.062510) 
 
To multiply these numbers: 
 

• Add the exponents to get the final exponent: 
o 3 + 3 = 6 

• Multiply significands: 
o 1.010012 * 1.00100012 = 1.0111001110012 

• Renormalize if necessary (not necessary in this case) 
• Determine sign 

o Product of positive and negative value is negative à sign bit = 0 
• Final result = 1.0111001110012 × 26 = 0xc2b9c800 in single-precision format  

= -92.89062510 
 

 
 


