16.482 / 16.561: Computer Architecture and Design

Summer 2015

Homework \#1 Solution
For each instruction sequence below, assume the following initial state. Note that your answers to each part should use the values below-your answer to part (2), for example, should not affect your answer to part (1). However, please note that each part is a sequence of instructions-the result of the sub in part (1) will affect the add in part (1).

- $\$ s 0=0 \times 16482000, \$ t 0=0 \times 0000000 C, \$ t 1=0 \times 00000003$
- Contents of memory (all values are in hexadecimal)

Address	Lo		Hi	
0x16482000	AA	BB	11	22
0x16482004	33	44	09	$F F$

Please note that in the (corrected) figure above, "Lo" refers to the lowest address offset within the line (i.e., 0), while "Hi" refers to the highest offset (i.e., 3). In other words, the byte at address 0x16482000 is 0xAA, while the byte at address 0x16482003 is 0x22.
For each sequence of instructions below, list all changed registers or memory locations and their new values. When listing memory values, list the entire word-for example, if a byte is written to 0x00100000, show the values at addresses 0x00100000-0x00100003.

1. (8 points)
```
sub $t3, $t0, $t1
    $t3 = $t0 - $t1 = 0x0000000C - 0x00000003 = 0x00000009
addi $t4, $t0, 8
    $t4 = $t0 + 8 = 0x0000000C + 8 = 0x00000014
add $t5, $t3, $t4
    $t5 = $t3 + $t4 = 0x00000009 + 0x00000014 = 0x0000001D
```

2. (12 points)
addi \$s1, \$zero, OxFFFF
\$s1 = \$zero + 0xFFFFFFFF (sign-extended immediate)
$=0+0 \times F F F F F F F F=0 \times F F F F F F F F$
xor $\$ s 2, \$ t 0, \$ s 1$
\$s2 = \$t0 XOR \$s1 = 0x0000000C XOR 0xFFFFFFFF
= 0xFFFFFFF3
srl $\$ s 3, \$ s 2,4$
\$s3 = \$s2 >> 4 (logical right shift)
= 0xFFFFFFF3 >> 4 = 0x0FFFFFFF
and $\$ s 4, \$ s 3, \$ s 2$
\$s4 = \$s3 AND \$s2 = 0x0FFFFFFF AND 0xFFFFFFF3
= 0x0FFFFFF3
```
3. (18 points)
```

lh $\$ t 2,0(\$ s 0)$
\$t2 = sign-extended halfword at mem[0x16482000]
$=0 \times F F F F A A B B$
Ihu $\$ t 3,6(\$ s 0)$
\$t3 = zero-extended halfword at mem[0x16482006]
$=0 \times 000009 \mathrm{FF}$
sra $\$ t 4, \$ t 2,8$
\$t4 = \$t2 >> 8 (arithmetic right shift-keep sign)
$=0 \times F F F F A A B B>8=0 x F F F F F F A A$
sb $\$ t 3,3(\$ s 0)$
mem [0x16482003] $=$ lowest byte of $\$ \mathrm{t} 3=0 \times \mathrm{FF}$ \rightarrow mem[0x16482000] $=0 \times A A B B 11 \mathrm{FF}$ (changed byte underlined)
sw $\$ t 4,4(\$ s 0)$
mem[0x16482004] $=\$ t 4=0 \times F F F F F F A A$
4. (12 points)
slti $\$ s 0, \$ t 1,11$
\$s0 = 1 if (\$t1 < 11)
\rightarrow Since $\$ \mathrm{t} 1=0 \times 00000003, \$ \mathrm{t} 1<11 \rightarrow \$ \mathrm{~s} 0=0 \times 00000001$
bne \$s0, \$zero, L
Branch to L if \$s0 is not equal to \$zero \$s0 = 1, \$zero = $0 \rightarrow$ Branch is taken
or $\$ t 0, \$ t 0, \$ t 1$
Instruction is skipped
L: sh \$t0, 2(\$s0)
mem[0x00000003] = lowest halfword of $\$ t 0=0 \times 000 \mathrm{C}$ \rightarrow mem [0x00000003] $=0 \times 00$, mem $[0 \times 00000004]=0 \times 0 C$

The original solution (shown below) is actually incorrect because the first instruction changes $\$ s 0$, which is used in the address calculation.
mem[0x16482002] = lowest halfword of $\$ t 0=0 \times 000 C$
\rightarrow mem[0x16482000] $=0 \times A A B B 000 C$ (changed bytes underlined)

