
16.482 / 16.561: Computer Architecture and Design
Summer 2015

Homework #1 Solution
For each instruction sequence below, assume the following initial state. Note that your
answers to each part should use the values below—your answer to part (2), for example,
should not affect your answer to part (1). However, please note that each part is a
sequence of instructions—the result of the sub in part (1) will affect the add in part (1).

• $s0 = 0x16482000, $t0 = 0x0000000C, $t1 = 0x00000003
• Contents of memory (all values are in hexadecimal)

Address Lo Hi
0x16482000 AA BB 11 22
0x16482004 33 44 09 FF

Please note that in the (corrected) figure above, “Lo” refers to the lowest address offset
within the line (i.e., 0), while “Hi” refers to the highest offset (i.e., 3). In other words, the
byte at address 0x16482000 is 0xAA, while the byte at address 0x16482003 is 0x22.
For each sequence of instructions below, list all changed registers or memory locations
and their new values. When listing memory values, list the entire word—for example, if a
byte is written to 0x00100000, show the values at addresses 0x00100000-0x00100003.

1. (8 points)
sub $t3, $t0, $t1
 $t3 = $t0 - $t1 = 0x0000000C – 0x00000003 = 0x00000009

addi $t4, $t0, 8
 $t4 = $t0 + 8 = 0x0000000C + 8 = 0x00000014

add $t5, $t3, $t4
 $t5 = $t3 + $t4 = 0x00000009 + 0x00000014 = 0x0000001D

2. (12 points)

addi $s1, $zero, 0xFFFF
 $s1 = $zero + 0xFFFFFFFF (sign-extended immediate)
 = 0 + 0xFFFFFFFF = 0xFFFFFFFF

xor $s2, $t0, $s1
 $s2 = $t0 XOR $s1 = 0x0000000C XOR 0xFFFFFFFF
 = 0xFFFFFFF3

srl $s3, $s2, 4
 $s3 = $s2 >> 4 (logical right shift)
 = 0xFFFFFFF3 >> 4 = 0x0FFFFFFF

and $s4, $s3, $s2
 $s4 = $s3 AND $s2 = 0x0FFFFFFF AND 0xFFFFFFF3

 = 0x0FFFFFF3

3. (18 points)
lh $t2, 0($s0)
 $t2 = sign-extended halfword at mem[0x16482000]
 = 0xFFFFAABB

lhu $t3, 6($s0)
 $t3 = zero-extended halfword at mem[0x16482006]
 = 0x000009FF

sra $t4, $t2, 8
 $t4 = $t2 >> 8 (arithmetic right shift—keep sign)
 = 0xFFFFAABB >> 8 = 0xFFFFFFAA

sb $t3, 3($s0)
 mem[0x16482003] = lowest byte of $t3 = 0xFF

è mem[0x16482000] = 0xAABB11FF (changed byte
underlined)

sw $t4, 4($s0)
 mem[0x16482004] = $t4 = 0xFFFFFFAA

4. (12 points)
slti $s0, $t1, 11
 $s0 = 1 if ($t1 < 11)

è Since $t1 = 0x00000003, $t1 < 11 à $s0 = 0x00000001

bne $s0, $zero, L
 Branch to L if $s0 is not equal to $zero
 $s0 = 1, $zero = 0 à Branch is taken

or $t0, $t0, $t1
 Instruction is skipped

L: sh $t0, 2($s0)
 mem[0x00000003] = lowest halfword of $t0 = 0x000C

è mem[0x00000003] = 0x00, mem[0x00000004] = 0x0C

The original solution (shown below) is actually incorrect
because the first instruction changes $s0, which is used in
the address calculation.

 mem[0x16482002] = lowest halfword of $t0 = 0x000C

è mem[0x16482000] = 0xAABB000C (changed bytes
underlined)

