16.482 / 16.561: Computer Architecture and Design

Summer 2014

Lecture 6: Key Questions June 10, 2014

1. What do we mean by "speculation?"

2. Why must we separate instruction completion from instruction commit in a processor that allows speculative execution?

3. What is a reorder buffer (ROB), and what is its purpose?

4. Describe the fields in each ROB entry.

16.482/16.561: Computer Architecture & Design Summer 2014

5. Describe the differences in Tomasulo's Algorithm when speculation is added.

16.482/16.561: Computer Architecture & Design Summer 2014 Instructor: M. Geiger Lecture 6: Key Questions

Example: Follow the execution of the code below through all cycles, showing the appropriate state for each piece of hardware in Tomasulo's Algorithm with speculation. Fill in the tables provided. Assume 2 cycle latency (1 EX, 1 MEM) for loads/stores, 6 cycles for multiply, 2 cycles for integer addition, and 1 cycle for the branch.

Cycle	1	2	3									
L.D F0,0(R1)	IF	IS	EX									
MUL.D F4,F0,F2		IF	IS									
S.D F4,0(R1)			IF									
DADDIU R1,R1,#-8												
BNE R1,R2,Loop												
L.D F0,0(R1)												
MUL.D F4,F0,F2												
S.D F4,0(R1)												
DADDIU R1,R1,#-8												
BNE R1,R2,Loop												

6. How does the reorder buffer help us avoid memory hazards?

7. How do we handle exceptions in a speculative machine?

16.482/16.561: Computer Architecture & Design Summer 2014 Instructor: M. Geiger Lecture 6: Key Questions

8. Define fine-grained and coarse-grained multithreading.

9. Define simultaneous multithreading.

Multithreading example

Assume you are using a processor with the following characteristics:

- 4 functional units: 2 ALUs, 1 memory port (load/store), 1 branch
- In-order execution

Given the three threads below, show how these instructions would execute using:

- Fine-grained multithreading
- Coarse-grained multithreading
 - Switch threads on any stall over 2 cycles
- Simultaneous multithreading
 - Thread 1 is preferred, followed by Thread 2 and Thread 3

You should assume any two instructions without stalls between them are independent.

Threads:		
Thread 1:	Thread 2:	Thread 3:
ADD.D	SUB.D	L.D
L.D	stall	stall
stall	L.D	stall
stall	S.D	stall
stall	L.D	stall
stall	stall	stall
SUB.D	ADD.D	stall
S.D	stall	ADD.D
stall	BNE	stall
BEQ		stall
		S.D
		stall
		stall
		BEQ

Instructor: M. Geiger Lecture 6: Key Questions

Extra space to work on multithreading example