
Solution to Multithreading Example 
 
Assume you are using a processor with the following characteristics: 

• 4 functional units: 2 ALUs, 1 memory port (load/store), 1 branch 
• In-order execution 

 
Given the three threads below, show how these instructions would execute using: 

• Fine-grained multithreading 
• Coarse-grained multithreading 

o Switch threads on any stall over 2 cycles 
• Simultaneous multithreading 

o Thread 1 is preferred, followed by Thread 2 and Thread 3 
 
You should assume any two instructions without stalls between them are independent. 
 
Thread 1: 
ADD.D 
L.D 
stall 
stall 
stall 
stall 
SUB.D 
S.D 
stall 
BEQ

 
Thread 2: 
SUB.D 
stall 
L.D 
S.D 
L.D 
stall 
ADD.D 
stall 
BNE

 
Thread 3: 
L.D 
stall 
stall 
stall 
stall 
stall 
stall 
ADD.D 
stall 
stall 
S.D 
stall 
stall 
BEQ

 
First, some notes: 

• All threads are independent of one another. 
• Each individual thread contains very few independent instructions that can 

actually be scheduled together. Only Thread 1, which has the ADD.D/L.D and 
SUB.D/S.D pairings, contains independent instructions that can be simultaneously 
scheduled on this machine. Thread 2 has the L.D/S.D/L.D instructions, but all 
need to use the single memory port. Thread 3 has no independent instructions. 

• The stall cycles given indicate not only if two instructions are independent, but 
also the amount of time that must pass between dependent instructions. 

• Once we have executed all instructions in a given thread, that thread is no longer 
active and should not be considered when alternating threads. 



Fine-grained multithreading: In this case, we alternate threads every cycle, executing 
as many independent instructions as we can. Thread selection proceeds in a round-robin 
fashion—start with thread 1, then 2, then 3, then back to 1. We assume that if a thread has 
no available instructions during its designated cycle, the processor will move to the next 
thread and check for available instructions.  
 
What determines whether instructions are available is the latency between dependent 
instructions—in this example, the stall cycles shown in each thread. For example, Thread 
1 stalls in cycle 4 because there are four stall cycles between its L.D and SUB.D 
instructions. With the L.D issued in cycle 1, the SUB.D cannot issue before cycle 6. 
 
The long latency stalls in Thread 3 lead to three stall cycles, as shown above. However, 
cycling between threads does allow both Threads 1 and 2 to proceed without stalling 
 
Cycle ALU1 ALU2 Memory Branch  

1 T1: ADD.D  T1: L.D   
2 T2: SUB.D     
3   T3: L.D   
4   T2: L.D   
5   T2: S.D   
6 T1: SUB.D  T1: S.D   
7   T2: L.D   
8    T1: BEQ T1 complete 
9 T2: ADD.D     
10 T3: ADD.D     
11    T2: BNE T2 complete 
12     T3 stall 
13   T3: S.D   
14     T3 stall 
15     T3 stall 
16    T3: BEQ  

 



Coarse-grained multithreading: One of the downsides to fine-grained multithreading, 
as we discussed, is that individual threads that can finish quickly have to wait for their 
turn even if they have instructions ready to execute. Coarse-grained multithreading 
attempts to fix this issue by only switching threads on long-latency stalls. The processor 
still rotates through all threads using round-robin scheduling, executing instructions from 
one thread at a time, but short stalls are tolerated. 
 
In this example, we defined “long-latency stalls” as being longer than 2 cycles, so the 
shorter stalls—cycle 13 for Thread 1, 3, 7, and 9 for Thread 2, and cycles 19-20 and 21-
22 for Thread 3—remain. (The stalls in cycles 15-17 for Thread 3 are part of a long-
latency stall that impacts execution only because Threads 1 and 2 have finished.) 
 
Note that this organization works extremely well for Thread 2, which has the fewest stall 
cycles in this example. This thread’s quick finish illustrates the main benefit of coarse-
grained multithreading. Note, also, that this organization allows the processor to more 
reasonably tolerate the long-latency stall between the ADD.D/L.D and SUB.D/S.D pairs 
in Thread 1. 
 
Cycle ALU1 ALU2 Memory Branch  

1 T1: ADD.D  T1: L.D   
2 T2: SUB.D     
3     T2 stall 
4   T2: L.D   
5   T2: S.D   
6   T2: L.D   
7     T2 stall 
8 T2: ADD.D     
9     T2 stall 
10    T2: BNE  
11   T3: L.D   
12 T1: SUB.D  T1: S.D   
13     T1 stall 
14    T1: BEQ  
15     T3 stall 
16     T3 stall 
17     T3 stall 
18 T3: ADD.D     
19     T3 stall 
20     T3 stall 
21   T3: S.D   
22     T3 stall 
23     T3 stall 
24    T3: BEQ  

 



Simultaneous multithreading: Both fine-grained and coarse-grained multithreading 
suffer from the limitation of only choosing instructions from a single thread at one time. 
Simultaneous multithreading allows a processor to check all threads for independent 
instructions, thus improving the utilization of the hardware as well as overall 
performance. 
 
Simultaneous multithreading must have some way of choosing which threads, if any, to 
prioritize each cycle. Our example uses a simple preferred thread scheme, with Thread 1 
as the highest-priority thread, followed by Thread 2 and then Thread 3. This method does 
not maximize fairness and may cause lower-priority threads to be starved, so more 
elaborate thread selection schemes may be used. 
 
Cycle ALU1 ALU2 Memory Branch  

1 T1: ADD.D T2: SUB.D T1: L.D   
2   T3: L.D   
3   T2: L.D   
4   T2: S.D   
5   T2: L.D   
6 T1: SUB.D  T1: S.D   
7 T2: ADD.D     
8    T1: BEQ  
9 T3: ADD.D   T2: BNE  
10     T3 stall 
11     T3 stall 
12   T3: S.D   
13     T3 stall 
14     T3 stall 
15    T3: BEQ  
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