
Solution to Multithreading Example

Assume you are using a processor with the following characteristics:

• 4 functional units: 2 ALUs, 1 memory port (load/store), 1 branch
• In-order execution

Given the three threads below, show how these instructions would execute using:

• Fine-grained multithreading
• Coarse-grained multithreading

o Switch threads on any stall over 2 cycles
• Simultaneous multithreading

o Thread 1 is preferred, followed by Thread 2 and Thread 3

You should assume any two instructions without stalls between them are independent.

Thread 1:
ADD.D
L.D
stall
stall
stall
stall
SUB.D
S.D
stall
BEQ

Thread 2:
SUB.D
stall
L.D
S.D
L.D
stall
ADD.D
stall
BNE

Thread 3:
L.D
stall
stall
stall
stall
stall
stall
ADD.D
stall
stall
S.D
stall
stall
BEQ

First, some notes:

• All threads are independent of one another.
• Each individual thread contains very few independent instructions that can

actually be scheduled together. Only Thread 1, which has the ADD.D/L.D and
SUB.D/S.D pairings, contains independent instructions that can be simultaneously
scheduled on this machine. Thread 2 has the L.D/S.D/L.D instructions, but all
need to use the single memory port. Thread 3 has no independent instructions.

• The stall cycles given indicate not only if two instructions are independent, but
also the amount of time that must pass between dependent instructions.

• Once we have executed all instructions in a given thread, that thread is no longer
active and should not be considered when alternating threads.

Fine-grained multithreading: In this case, we alternate threads every cycle, executing
as many independent instructions as we can. Thread selection proceeds in a round-robin
fashion—start with thread 1, then 2, then 3, then back to 1. We assume that if a thread has
no available instructions during its designated cycle, the processor will move to the next
thread and check for available instructions.

What determines whether instructions are available is the latency between dependent
instructions—in this example, the stall cycles shown in each thread. For example, Thread
1 stalls in cycle 4 because there are four stall cycles between its L.D and SUB.D
instructions. With the L.D issued in cycle 1, the SUB.D cannot issue before cycle 6.

The long latency stalls in Thread 3 lead to three stall cycles, as shown above. However,
cycling between threads does allow both Threads 1 and 2 to proceed without stalling

Cycle ALU1 ALU2 Memory Branch

1 T1: ADD.D T1: L.D
2 T2: SUB.D
3 T3: L.D
4 T2: L.D
5 T2: S.D
6 T1: SUB.D T1: S.D
7 T2: L.D
8 T1: BEQ T1 complete
9 T2: ADD.D
10 T3: ADD.D
11 T2: BNE T2 complete
12 T3 stall
13 T3: S.D
14 T3 stall
15 T3 stall
16 T3: BEQ

Coarse-grained multithreading: One of the downsides to fine-grained multithreading,
as we discussed, is that individual threads that can finish quickly have to wait for their
turn even if they have instructions ready to execute. Coarse-grained multithreading
attempts to fix this issue by only switching threads on long-latency stalls. The processor
still rotates through all threads using round-robin scheduling, executing instructions from
one thread at a time, but short stalls are tolerated.

In this example, we defined “long-latency stalls” as being longer than 2 cycles, so the
shorter stalls—cycle 13 for Thread 1, 3, 7, and 9 for Thread 2, and cycles 19-20 and 21-
22 for Thread 3—remain. (The stalls in cycles 15-17 for Thread 3 are part of a long-
latency stall that impacts execution only because Threads 1 and 2 have finished.)

Note that this organization works extremely well for Thread 2, which has the fewest stall
cycles in this example. This thread’s quick finish illustrates the main benefit of coarse-
grained multithreading. Note, also, that this organization allows the processor to more
reasonably tolerate the long-latency stall between the ADD.D/L.D and SUB.D/S.D pairs
in Thread 1.

Cycle ALU1 ALU2 Memory Branch

1 T1: ADD.D T1: L.D
2 T2: SUB.D
3 T2 stall
4 T2: L.D
5 T2: S.D
6 T2: L.D
7 T2 stall
8 T2: ADD.D
9 T2 stall
10 T2: BNE
11 T3: L.D
12 T1: SUB.D T1: S.D
13 T1 stall
14 T1: BEQ
15 T3 stall
16 T3 stall
17 T3 stall
18 T3: ADD.D
19 T3 stall
20 T3 stall
21 T3: S.D
22 T3 stall
23 T3 stall
24 T3: BEQ

Simultaneous multithreading: Both fine-grained and coarse-grained multithreading
suffer from the limitation of only choosing instructions from a single thread at one time.
Simultaneous multithreading allows a processor to check all threads for independent
instructions, thus improving the utilization of the hardware as well as overall
performance.

Simultaneous multithreading must have some way of choosing which threads, if any, to
prioritize each cycle. Our example uses a simple preferred thread scheme, with Thread 1
as the highest-priority thread, followed by Thread 2 and then Thread 3. This method does
not maximize fairness and may cause lower-priority threads to be starved, so more
elaborate thread selection schemes may be used.

Cycle ALU1 ALU2 Memory Branch

1 T1: ADD.D T2: SUB.D T1: L.D
2 T3: L.D
3 T2: L.D
4 T2: S.D
5 T2: L.D
6 T1: SUB.D T1: S.D
7 T2: ADD.D
8 T1: BEQ
9 T3: ADD.D T2: BNE
10 T3 stall
11 T3 stall
12 T3: S.D
13 T3 stall
14 T3 stall
15 T3: BEQ

	Solution to Multithreading Example

