
16.482 / 16.561: Computer Architecture and Design
Spring 2014

Homework #5
Due Friday, 6/13/14

Notes:
• While typed submissions are preferred, handwritten submissions are acceptable.
• Any handwritten solutions that are scanned and submitted electronically must be

clearly legible and combined into a single file—simply sending a picture of each
scanned page is not an acceptable form of submission.

• This assignment is worth a total of 100 points.

All problems deal with the code below:

 DADDI R3, R0, #4
outer: DADDI R2, R1, #32
inner: L.D F0, 0(R1)
 MULT.D F6, F0, F6

 S.D F6, 8(R1)
 DADDI R1, R1, #16
 BNE R2, R1, inner

DADDI R3, R3, #-2
 BNEZ R3, outer

The assembly code above represents a nested loop. The C code below gives a simple
example of such a programming structure—please note that you should not assume that
the loop above is an exact match for this loop:

 for (i = 0; i < 3; i++) { // Outer loop
 for (j = 0; j < 4; j++) { // Inner loop
 // Loop body
 }
 }
In each outer loop iteration of a nested loop, you execute the entire inner loop. Therefore,
in this example, you’re executing the loop body four times for every outer loop iteration.
Since there are three outer loop iterations, that means you’re executing the loop body a
total of 3 x 4 = 12 times.

The loop with which you are dealing doesn’t have that many iterations, but you do have
to account for all iterations of the outer and inner loops. You can determine exactly how
many iterations there are using the code above.

Also, one other note: the DADDI instruction is a 64-bit integer add instruction, which
used in 64-bit MIPS processors.

16.482/16.561: Computer Architecture & Design Instructor: M. Geiger
Summer 2014 Homework 5

1. Register renaming (20 points) Write out the instructions used in one outer loop

iteration (which will contain multiple inner loop iterations) and show how the
registers in that loop iteration are renamed.

Assume that DADDI instructions can use reservation stations named Add1-Add9,
load instructions can use reservation stations named Load1-Load9, and multiply
instructions use reservation stations named Mult1-Mult9. (You should not need all of
these reservation stations.) Note that, although store and branch instructions are
assigned reservation stations, they do not write to registers and therefore do not need
to rename their destination operands.

2. Dynamic scheduling and speculation (40 points) Assume the following latencies:
• 1 cycle for DADDI, BNE, and BNEZ
• 3 cycles (1 EX, 2 MEM) for L.D and S.D
• 4 cycles for MULT.D

Write a pipeline diagram to show how long all instructions in this nested loop will take in
a processor using Tomasulo’s Algorithm with speculation. Assume all branch predictions
are correct, as are all predicted targets from the BTB.

3. Speculation & branch prediction (40 points) Now, assume the processor has a 2-bit

BHT to predict branch outcomes. On a mispredicted branch, the correct instructions
are fetched starting with the cycle after the misprediction is recognized (EX). Assume
that all BHT entries are initially equal to 00, and that the two branches in this
example use separate BHT entries. Also, assume the BTB correctly predicts all
targets for taken branches. How long will the loop now take?

