
 1 

16.482 / 16.561: Computer Architecture and Design 
Summer 2014 

 
Midterm Exam Solution 

 
1. (16 points) UEvaluating instructions 
For each part of the following question, assume the following initial state. Note that your 
answers to each part should use the values below—your answer to part (a), for example, should 
not affect your answer to part (b). 

• $s1 = 0x00000005, $s2 = 0x00000003, $s3 = 0x00002000 
• Contents of memory (all values are in hexadecimal) 

Address     
0x00002014 BE 12 EF 33 
0x00002018 06 05 20 14 

 
For each instruction sequence below, list all changed registers and/or memory locations and 
their new values. When listing memory values, list the entire word—for example, if a byte is 
written to 0x00002014, show the values at addresses 0x00002014-0x00002017. 
 
a. sub $t0, $s1, $s2 

$t0 = $s1 - $s2 = 5 – 3 = 0x00000002 

xori $t1, $t0, 0xFFFF 
 $t1  = $t0 XOR 0xFFFF = 0x00000002 XOR 0x0000FFFF  

= 0x0000FFFD 

sh  $t1, 0x16($s3) 
 mem[0x16 + $s3] = lowest halfword of $t1  
 mem[0x2016] = 0xFFFD 
 mem[0x2014] = BE12FFFD (last 16 bits of word changed) 

sll $t2, $t1, 8 
 $t2 = $t1 << 8 = 0x0000FFFD << 8 = 0x00FFFD00 

 
b. addi $t3, $zero, 0x2014 

$t3 = $zero + 0x2014 = 0 + 0x2014 = 0x00002014  

lh  $t4, 6($t3) 
 $t4  = sign-extended halfword at mem[0x0000201A]  

= 0x00002014 

and $t5, $t4, $s1 
 $t5 = $t4  AND $s1 = 0x0002014 AND 0x00000005 = 0x00000004 

slt $t6, $t5, $s2 
 $t6 = 1 if $t5 < $s2, = 0 otherwise 
 Since $t5 = 0x00000004 and $s2 = 0x00000003, $t6 = 0 

 



 2 

2. (14 points) Binary multiplication 
You are given A = 6 and B = -3. Assume each operand uses four bits. Show how the binary 
multiplication of A * B would proceed using Booth’s Algorithm. 
 
 0 0 1 1 0       Multiplicand (6) 
 1 1 0 1 0       -Multiplicand (-6) 
             
 0 0 0 0 0 1 1 0 1 0  Initial product/multiplier (multiplier = -3) 
+ 1 1 0 1 0       Step 1: Last 2 bits = 10  add –Mcand, 
 1 1 0 1 0 1 1 0 1 0         then shift right 
             
 1 1 1 0 1 0 1 1 0 1  Step 2: Last 2 bits = 01  add Mcand, 
+ 0 0 1 1 0              then shift right 
 0 0 0 1 1 0 1 1 0 1   
             
 0 0 0 0 1 1 0 1 1 0  Step 3: Last 2 bits = 10  add –Mcand, 
+ 1 1 0 1 0              then shift right 
 1 1 0 1 1 1 0 1 1 0   
             
 1 1 1 0 1 1 1 0 1 1  Step 4: Last 2 bits = 11  shift right 
 1 1 1 1 0 1 1 1 0 1  Final product (-18) in bold 
 

 



 3 

3. (20 points) IEEE floating-point format  
Add the two IEEE single-precision floating-point values 0x41380000 and 0xc0980000. For full 
credit, you must show all work, including:  

• Convert the two values into binary 
• Perform the addition in binary, not decimal 
• Re-encode the result in IEEE single-precision format 

 
Solution: We break each given value into the three fields of a single-precision floating-point 
value: sign (1 bit), biased exponent (8 bits), and fraction (23 bits), then convert each value: 
 

0x41380000 = 0100 0001 0011 1000 0000 0000 0000 00002 
Sign = 0 (positive value) 
Biased exponent = 100000102 = 130 

  Actual exponent = [Biased exponent] – bias = 130 – 127 = 3 
  Fraction = 011 1000 0000 0000 0000 00002 = 01112 
 0x41380000 = 1.01112 × 23 = 11.510 

 
0xC0980000 = 1100 0000 1001 1000 0000 0000 0000 00002 

Sign = 1 (negative value) 
Biased exponent = 100000012 = 129 

  Actual exponent = [Biased exponent] – bias = 129 – 127 = 2 
  Fraction = 001 1000 0000 0000 0000 00002 = 00112 
 0xC0980000 = -1.00112 × 22 = -4.7510 

 
To add these numbers: 
 

• Align binary points by shifting number with smaller exponent: 
o -1.00112 × 22 = -0.10011 × 23 

• Add significands: 
o 1.01112 × 23 + -0.10011 × 23 = 0.11011 × 23 

• Renormalize if necessary 
o 0.11011 × 23 = 1.1011 × 22 

• To convert back to single-precision format: 
o Sign = 0 
o Biased exponent = actual exponent + bias = 2 + 127 = 129 = 100000012 
o Fraction = 1011 ... 0002 

 
Therefore, the final result is 1.10112 × 22 = 0x40D80000 in single-precision format = 6.7510. 
 



 4 

4. (14 points) Pipelining  
Consider the following code sequence for both parts of this question. Assume the use of a five-
stage pipeline. 

 
lw $s0, 0($t1) 
lw $s1, 4($t1) 
add $t0, $t3, $s0 
sub $t1, $s1, $s0 
add $t2, $t1, $t0 
lw $s2, 0($t2) 
add $t3, $t1, $t2 
xor $t4, $t3, $s1 
sw $s2, 4($t2) 
 

 
For both parts of this problem, show all work for full credit. 
 
a. (8 points) If we assume we have a five stage pipelined datapath without forwarding, how 

many cycles will the instructions above take? 
 
Solution: Without forwarding, we have to figure out where the dependences are and how many 
no-ops are necessary. Remember that dependent instructions must have at least two cycles 
between them; given this rule of thumb, we can see that the loop body should be rewritten with 
no-ops as follows: 
 

lw $s0, 0($t1) 
lw $s1, 4($t1) 
nop 
add $t0, $t3, $s0 
sub $t1, $s1, $s0 
nop 
nop 
add $t2, $t1, $t0 
nop 
nop 
lw $s2, 0($t2) 
add $t3, $t1, $t2 
nop 
nop 
xor $t4, $t3, $s1 
sw $s2, 4($t2) 

 
 
The revised loop body now has 16 instructions—the original 9 plus 7 no-ops. To determine the 
number of cycles, you could draw a pipeline diagram, or remember that a program with N 
instructions running on an M-stage pipeline takes M + (N-1) cycles. In this case, M = 5 and N = 
16, giving a total of 5 + (16-1) = 20 cycles. 



 5 

4 (continued)  
Again, consider the following code sequence: 

 
lw $s0, 0($t1) 
lw $s1, 4($t1) 
add $t0, $t3, $s0 
sub $t1, $s1, $s0 
add $t2, $t1, $t0 
lw $s2, 0($t2) 
add $t3, $t1, $t2 
xor $t4, $t3, $s1 
sw $s2, 4($t2) 

 
b. (6 points) If we now assume a five stage pipelined datapath with forwarding, how many 

cycles will the instructions above take? 
 
Solution: Recall that forwarding removes most data hazards; the only one that cannot be 
completely removed occurs when a load instruction produces a result used in the very next 
instruction. That situation does not occur in this program—there’s always at least one cycle 
between each load and the instruction or instructions that depend on it. Therefore, this 9-
instruction sequence takes 5 + (9-1) = 13 cycles  



 6 

5. (20 points) Dynamic branch prediction 
a. (14 points) Say you are executing a program that contains two branches, as shown below. 

You are given the addresses of each branch in both decimal and hexadecimal. 
 

Address   
Decimal Hex   

10 0x0A loop … 
   … 

56 0x38  BEQ R4, R0, else 
   … 

72 0x48  BNE R7, R8, loop 
 
Your processor contains an eight entry, 2-bit branch history table. Initially, entries 0-3 (the first 
four lines of the table) all have the state 01, and entries 4-7 (the last four lines of the table) all 
have the state 10. 
 
Complete the table below to show which BHT entry is used to predict each branch, what 
predictions are made based on that entry, and how the state of each BHT entry changes 
throughout the program. You are given the actual outcome for each branch. 
 
Solution: Note that, to determine the BHT entry number in the 8-entry table, you must use the 3 
lowest-order address bits that actually change—the lowest two bits of every instruction address 
are always 0. Therefore, the BEQ at address 56 = 0011 10002 accesses entry 6, and the BNE at 
address 72 = 0100 10002 accesses entry 2. 

Students were responsible for completing the table entries with underlined, bold-faced font. 
 

 
Loop 

Iteration Branch 
BHT 
Entry  

# 

BHT 
Entry 
State 

Pred. Actual 
Outcome 

New BHT 
Entry 
State 

1 BEQ 6 10 T T 11 

1 BNE 2 01 NT T 11 

2 BEQ 6 11 T NT 10 

2 BNE 2 11 T T 11 

3 BEQ 6 10 T T 11 

3 BNE 2 11 T T 11 

4 BEQ 6 11 T NT 10 

4 BNE 2 11 T NT 10 



 7 

5 (continued) 
b. (6 points) Assume you have a (3,2) correlating predictor in the state shown below: 
 

00  00  00  00  11  01  10  10 
10  01  01  10  10  01  01  01 
11  11  10  00  01  10  10  10 
01  01  11  11  00  01  00  11 
               
     1 0 1      

 
If we have a branch at address 28 (0x1C in hex), what entry of the predictor will we access, and 
what will the prediction be? As part of your answer, circle the appropriate entry above, and 
briefly explain how we determine which entry to access. 
 
Solution: 
To determine which entry is accessed, we use the global history (shown at the bottom of the 
predictor) to choose a column (a specific BHT within the correlating predictor), and the address 
of the branch to choose a line within that BHT. 
 
We can see that the global history is 101, which means that column 5 (highlighted in red) is the 
column used for this prediction. (We assume the leftmost column is column 0.) 
 
As for the row, we need to choose the appropriate bits of the branch address. Note that each BHT 
has 4 = 22 rows, so 2 bits from the address are needed. Remember that we do not use the two 
least significant bits, which will always be 0 in a system with 32-bit instructions. We therefore 
choose the next two bits. If we look at the binary value of the branch address: 
 
 28 = 0x1C = 0001 1100 
 
we can see that the bits used to choose a row are 11, so we’ll choose row 3, highlighted in blue 
above. The appropriate entry, which is equal to 01, is highlighted in purple. The branch will be 
predicted as not taken. 



 8 

6. (16 points) Dependences 
Answer the following questions about the code sequence below: 
 

I0:  L.D   F0, 0(R4) 
I1:  ADD.D F4, F0, F2 
I2:  S.D  F4, 8(R4) 
I3:  DIV.D F6, F0, F6 
I4:  MUL.D F2, F4, F0 
I5:   ADDI  R4, R4, 32 
I6:  SUB.D F4, F6, F2 
I7:  S.D  F4, -16(R4) 
I8:  BLT  R4, R3, I0 

  
a. (8 points) List all true data dependences in this code. Assume the branch at the end of the 
loop is taken at least once. List your dependences in the form: 

 
<register number>:<producing inst.>  <consuming inst.> 
 

For example, a dependence involving R1 between “I2” and “I3” would be listed as: 
 
R1: I2I3 

 
Your list should only contain true dependences—do not list any name dependences. 
 
Solution: Loop-carried dependences are marked with (LC): 
 
 F0: I0  I1 
 F0: I0  I3 
 F0: I0  I4 
 F4: I1  I2 
 F4: I1  I4 
 F6: I3  I6 
 F6: I3  I3 (LC) 
 F2: I4  I6 
 F2: I4  I1 (LC) 
 R4: I5  I7 
 R4: I5  I8 
 R4: I5  I0 (LC) 
 R4: I5  I2 (LC) 
 F4: I6  I7 



 9 

6 (continued) 
Again, consider the following code, and assume the branch at the end of the loop is taken at least 
once: 
 

I0:  L.D   F0, 0(R4) 
I1:  ADD.D F4, F0, F2 
I2:  S.D  F4, 8(R4) 
I3:  DIV.D F6, F0, F6 
I4:  MUL.D F2, F4, F0 
I5:   ADDI  R4, R4, 32 
I6:  SUB.D F4, F6, F2 
I7:  S.D  F4, -16(R4) 
I8:  BLT  R4, R3, I0 

 
b. (4 points) List all anti-dependences in this code.  
 
Solution: Loop-carried anti-dependences are marked with (LC). 
 

F0: I0 & I1 (LC) 
F0: I0 & I3 (LC) 
F0: I0 & I4 (LC) 
F4: I1 & I7 (LC) 
F6: I3 & I3 (LC) 
F6: I3 & I6 (LC) 
F2: I4 & I1 

 F2: I4 & I6 (LC) 
 R4: I5 & I0 
 R4: I5 & I2 
 R4: I5 & I7 (LC) 
 F4: I6 & I2 
 F4: I6 & I4 
 
c. (4 points) List all output dependences in this code. 
 
Solution: The only output dependence is: F4: I1 & I6 
 


	Midterm Exam Solution

