16.482 / 16.561: Computer Architecture and Design Spring 2015

Lecture 8: Key Questions March 26, 2015

1.	Describe the levels of a basic memory hierarchy.
2.	Define the following: hit, miss, hit rate, miss rate
3.	Define and list the formula for average memory access time (AMAT)

16.482/16.561: Computer Architecture & Design Spring 2015	Instructor: M. Geiger Lecture 8: Key Questions		
4. AMAT Example: Given the following:			
• Cache: 1 cycle access time			

What is the average memory access time if the cache hit rate is 90% and the memory hit rate is 80%?

Memory: 100 cycle access timeDisk: 10,000 cycle access time

5. Explain the principle of locality, and define temporal and spatial locality.

16.482/16.561: Computer	Architecture & Des	sign
Spring 2015		_

Instructor: M. Geiger Lecture 8: Key Questions

6. Explain the basic physical organization of a cache.

7. Define the different types of block placement.

associative.

Instructor: M. Geiger

Lecture 8: Key Questions

Block #	Cache line(s): direct-mapped	Cache line(s): 4-way set associative
0		
13		
249		

9. How are blocks identified in the cache? Show how an address can be broken down and identify the role of each field in a cache access.

16.482/16.561: Computer Architecture & Design

Spring 2015

Instructor: M. Geiger
Lecture 8: Key Questions

- 10. Example: Say we have the following cache organization
 - Direct-mapped
 - 4-byte blocks
 - 32 B cache
 - 6-bit memory addresses

Given the addresses 3, 4, 6, 11, 37, and 43, answer the following questions:

- a. Which addresses belong to the exact same block (i.e., both tag and index are equal)?
- b. Which addresses map to the same cache line, but are part of different blocks (i.e., index numbers are equal, but tags are different?

Hint: Must convert all addresses into binary, then determine the appropriate values for each field.

11. Explain what it means for a block to be evicted from the cache. When an eviction is required in a set-associative cache, how do we choose which block to evict?

12. Describe the two different cache write policies. Which one is more commonly used, and why?

Instructor: M. Geiger Lecture 8: Key Questions

13. <u>Example:</u> Given the final cache and memory state shown (after walking through the first five instructions in the direct-mapped cache access example):

MEMORY:

Address		Address	
0	78	8	18
1	29	9	21
2	120	10	33
3	123	11	28
4	18	12	19
5	150	13	200
6	162	14	210
7	173	15	225

CACHE:

٧	D	Tag	Da	ata
1	0	1	18	21
0	0	0	0	0
1	1	1	19	29
0	0	0	0	0

Determine the new cache state, as well as any modified registers and/or memory blocks, after each access listed below.

Access	Modified	Cache state			Modified		
Access	register	V	D	Tag	Da	ata	mem. block
lb \$t1,3(\$zero)							
sb \$t0,2(\$zero)							
lb \$t0,11(\$zero)							