
16.482 / 16.561: Computer Architecture and Design
Spring 2015

Homework #5
Due Thursday, February 26

Notes:
• While typed submissions are preferred, handwritten submissions are acceptable.
• Any electronic submission must be in a single file. Archive files will not be accepted.
• Electronic submissions should be e-mailed to Dr. Geiger at Michael_Geiger@uml.edu.
• This assignment is worth a total of 100 points.

All problems deal with the code below:

 DADDI R3, R0, #4
outer: DADDI R2, R1, #32
inner: L.D F0, 0(R1)
 MULT.D F6, F0, F6

 S.D F6, 8(R1)
 DADDI R1, R1, #16
 BNE R2, R1, inner

DADDI R3, R3, #-2
 BNEZ R3, outer

The assembly code above represents a nested loop. The C code below gives a simple example of
such a programming structure:

 for (i = 0; i < 3; i++) { // Outer loop
 for (j = 0; j < 4; j++) { // Inner loop
 // Loop body
 }
 }

In each outer loop iteration of a nested loop, you execute the entire inner loop. Therefore, in this
example, you’re executing the loop body four times for every outer loop iteration. Since there are
three outer loop iterations, that means you’re executing the loop body a total of 3 x 4 = 12 times.

Please note that the C code above is not directly related to the assembly sequence you must
work with in this problem—the C code is simply a general example used to describe the
structure of a nested loop. The loop with which you are dealing doesn’t necessarily have 12
iterations, but you do have to account for all iterations of the outer and inner loops. You can
determine exactly how many iterations there are using the code above.

Also, one other note: the DADDI instruction is a 64-bit integer add instruction, which is used in
64-bit MIPS processors.

16.482/16.561: Computer Architecture & Design Instructor: M. Geiger
Spring 2015 Homework 5

1. Dependences (40 points) Identify all true dependences, anti-dependences, and output

dependences in the code above. Remember, you have a pair of nested loops, so you will
likely find loop-carried dependences in the code.

2. Register renaming (20 points) Write out the instructions used in one outer loop iteration
(which will contain multiple inner loop iterations) and show how the registers in that loop
iteration are renamed.

Assume that DADDI instructions can use reservation stations named Add1-Add9, load
instructions can use reservation stations named Load1-Load9, and multiply instructions use
reservation stations named Mult1-Mult9. (You should not need all of these reservation
stations.) Note that, although store and branch instructions are assigned reservation stations,
they do not write to registers and therefore do not need to rename their destination operands.

3. Dynamic scheduling (40 points) Assume the following latencies:
• 1 cycle for DADDI, BNE, and BNEZ
• 3 cycles (1 EX, 2 MEM) for L.D and S.D
• 4 cycles for MULT.D

Write a pipeline diagram to show how long all instructions in this nested loop will take in a
processor using Tomasulo’s Algorithm. Assume that you do not have speculation and that you
cannot fetch the target of a branch until the branch outcome is known. Assume the earliest you
can determine the branch outcome is the IS stage, but note that you may have to wait for all
source operands to become available before you can compare them and determine if the branch
is taken.

