Lecture 8: Key Questions April 10, 2014

1. How are blocks identified in the cache? Show how an address can be broken down and identify the role of each field in a cache access.

- 2. <u>Example:</u> Given the following:
 - 32-bit address
 - 32 KB direct-mapped cache
 - 64-byte blocks

What are the sizes for the tag, index, and block offset fields?

- 3. <u>Example:</u> Say we have the following cache organization
 - Direct-mapped
 - 4-byte blocks
 - 32 B cache
 - 6-bit memory addresses

Given the addresses 3, 4, 6, 11, 37, and 43, answer the following questions:

- a. Which addresses belong to the exact same block (i.e., both tag and index are equal)?
- b. Which addresses map to the same cache line, but are part of different blocks (i.e., index numbers are equal, but tags are different?

<u>Hint:</u> Must convert all addresses into binary, then determine the appropriate values for each field.

4. Explain what it means for a block to be evicted from the cache. When an eviction is required in a set-associative cache, how do we choose which block to evict?

5. Describe the two different cache write policies. Which one is more commonly used, and why?

6. <u>Example:</u> Given the final cache and memory state shown (after walking through the first five instructions in the direct-mapped cache access example):

MEMORY:

Address		Address	
0	78	8	18
1	29	9	21
2	120	10	33
3	123	11	28
4	18	12	19
5	150	13	200
6	162	14	210
7	173	15	225

CACHE:

V	D	Tag	Data		
1	0	1	18	21	
0	0	0	0	0	
1	1	1	19	29	
0	0	0	0	0	

Determine the new cache state, as well as any modified registers and/or memory blocks, after each access listed below.

nem. block

7. <u>Example:</u> Given a 4-way set associative cache, and five blocks (A, B, C, D, E) that all map to the same set, determine which block is evicted on the access to block E in each of the access sequences below if we use LRU replacement:

a. A, B, C, D, E

b. A, B, C, D, B, C, A, D, A, C, D, B, A, E

c. A, B, C, D, C, B, A, C, A, C, B, E

8. <u>Example:</u> Given the final set-associative cache and memory state shown (after walking through the first five instructions in the set-associative cache example):

MEMORY:

Address		Address	_
0	78	8	18
1	29	9	21
2	120	10	33
3	123	11	28
4	18	12	19
5	150	13	200
6	162	14	210
7	173	15	225

CACHE:

V	D	MRU	Tag	Data	
1	0	1	10	18	21
1	1	0	11	19	29
0	0	0	00	0	0
0	0	0	00	0	0

Determine the new cache state, as well as any modified registers and/or memory blocks, after each access listed below.

Access	Modified	Cache state					Modified
ALLESS	register	V	D	MRU	Tag	Data	mem. block
							_
lb \$t1,3(\$zero)							_
1b d = 0 11 (d = 0)							
lb \$t0,11(\$zero)							
sb \$t0, 2(\$zero)							