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16.482 / 16.561: Computer Architecture and Design 
Spring 2014 

Midterm Exam Solution 
 
1. (12 points) UEvaluating instructions 
For each part of the following question, assume the following initial state. Note that your 
answers to each part should use the values below—your answer to part (a), for example, 
should not affect your answer to part (b). 

• $t0 = 0x00000009, $t1 = 0x00000004, $t2 = 0x00200000 
• Contents of memory (all values are in hexadecimal) 

Address     
0x00200000 02 25 20 10 
0x00200004 9A A9 BC CB 

 
For each instruction sequence below, list all changed registers and/or memory locations 
and their new values. When listing memory values, list the entire word—for example, if a 
byte is written to 0x00200000, show the values at addresses 0x00200000-0x00200003. 
 
a. Solution: 

addi $t4, $t0, -3 
 $t4 = $t0 – 3 = 9 – 3 = 0x00000006 

sub $t4, $t4, $t1 
 $t4 = $t4 – $t1 = 6 - 4 = 0x00000002 

xor $t5, $t4, $t0 
$t5 = $t4 XOR $t0 = 0x00000002 XOR 0x00000009 = 

0x0000000B 

slt $t6, $t1, $t5 
$t6 = 1 if $t1 < $t5; 0 otherwise 
Since $t1 = 4 and $t5 = 11 (0xB = 1110), $t1 < $t5  

$t6 = 1 
 
b. Solution: 

lbu $s0, 4($t2)  
 $s0 = zero-extended byte at mem[0x00200004] = 
0x0000009A 

ori $s1, $s0, 0x8888 
 $s1 = $s0 OR 0x8888 = 0x0000009A OR 0x00008888 = 
0x0000889A 

sll $s2, $s1, 4 
 $s2 = $s1 << 4 = 0x000889A0 

sb  $s2, 2($t2) 
 mem[0x00200002] = lowest byte of $s2 = 0xA0 

  mem[0x00200000] = 0x0225A010 (changed byte underlined) 
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2. (14 points) Binary multiplication 
You are given A = -2 and B = -6. Assume each operand uses four bits. Show how the 
binary multiplication of A * B would proceed using Booth’s Algorithm. 

 
 1 1 1 1 0       Multiplicand (-2) 
 0 0 0 1 0       -Multiplicand (2) 
             
 0 0 0 0 0 1 0 1 0 0  Initial product/multiplier (multiplier = -6) 
            Step 1: Last 2 bits = 00  shift right 
             
 0 0 0 0 0 0 1 0 1 0  Step 2: Last 2 bits = 10  add –Mcand, 
+ 0 0 0 1 0              then shift right 
 0 0 0 1 0 0 1 0 1 0   
             
 0 0 0 0 1 0 0 1 0 1  Step 3: Last 2 bits = 01  add Mcand, 
+ 1 1 1 1 0              then shift right 
 1 1 1 1 1 0 0 1 0 1   
             
 1 1 1 1 1 1 0 0 1 0  Step 4: Last 2 bits = 10  add –Mcand, 
+ 0 0 0 1 0              then shift right 
 0 0 0 0 1 1 0 0 1 0   
             
 0 0 0 0 0 1 1 0 0 1  Final product (12) in bold 
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3. (18 points) IEEE floating-point format  
Multiply the two IEEE single-precision floating-point values 0xC0000000 and 
0xC0400000. For full credit, you must show all work, including:  

• Convert the two values into binary 
• Perform the multiplication in binary (as done in Homework 2) 
• Re-encode the result in IEEE single-precision format 

 
Solution: We break each given value into the three fields of a single-precision floating-
point value: sign (1 bit), biased exponent (8 bits), and fraction (23 bits): 
 

0xC0000000 = 1100 0000 0000 0000 0000 0000 0000 00002 
0xC0400000 = 1100 0000 0100 0000 0000 0000 0000 00002 
 

We can quickly see that the sign and exponent are the same for both numbers: 
 
Sign = 1 (negative value) 
Biased exponent = 100000002 = 128 
 Actual exponent = [Biased exponent] – bias = 128 – 127 = 1 

 
The fractions are simple as well: 0 for the first value, and .100... for the second. We 
therefore have the following two values: 

 
 -1.02 × 21 = -210 
 -1.12 × 21 = -310 
 
To multiply these numbers: 
 

• Add the exponents to get the final exponent: 
o 1 + 1 = 2 

• Multiply significands: 
o 1.02 * 1.12 = 1.12 

• Renormalize if necessary (not necessary in this case) 
• Determine sign 

o Product of two negative values is positive  sign bit = 0 
• To convert back to single-precision format: 

o Sign = 0 
o Biased exponent = actual exponent + bias = 2 + 127 = 129 = 100000012 
o Fraction = 100 ... 0002 

 
Therefore, the final result is 1.12 × 22 = 0x40C00000 in single-precision format = 610. 
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4. (14 points) Pipelining  
Consider the following code sequence for both parts of this question.  

 
loop: add $t0, $t1, $t2 

lw $t3, 10($t0) 
lw $t4, 14($t0) 
sub $t5, $t4, $t3 
sw $t5, 18($t0) 
addi $t2, $t2, 4 
slti $t6, $t2, 200 
bne $t6, $zero, loop 

 
For both parts of this problem, show all work for full credit. 
 
a. (8 points) If we assume we have a pipelined datapath without forwarding, how many 

cycles will one loop iteration take? 
 
Solution: Without forwarding, we have to figure out where the dependences are and how 
many no-ops are necessary. Remember that dependent instructions must have at least two 
cycles between them; given this rule of thumb, we can see that the loop body should be 
rewritten with no-ops as follows: 
 
loop: add $t0, $t1, $t2 
  nop 
  nop 

lw $t3, 10($t0) 
lw $t4, 14($t0) 
nop 
nop 
sub $t5, $t4, $t3 
nop 
nop 
sw $t5, 18($t0) 
addi $t2, $t2, 4 
nop 
nop 
slti $t6, $t2, 200 
nop 
nop 
bne $t6, $zero, loop 

 
The revised loop body now has 18 instructions—the original 8 plus 10 no-ops. To 
determine the number of cycles, you could draw a pipeline diagram, or remember that a 
program with N instructions running on an M-stage pipeline takes M + (N-1) cycles. In 
this case, M = 5 and N = 18, giving a total of 5 + (18-1) = 22 cycles. 
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4 (continued)  
Again, consider the following code sequence: 

 
loop: add $t0, $t1, $t2 

lw $t3, 10($t0) 
lw $t4, 14($t0) 
sub $t5, $t4, $t3 
sw $t5, 18($t0) 
addi $t2, $t2, 4 
slti $t6, $t2, 200 
bne $t6, $zero, loop 

 
b. (6 points) If we now assume a pipelined datapath with forwarding, how many cycles 

will one loop iteration take? 
 
Solution: Recall that forwarding removes most data hazards; the only one that cannot be 
completely removed occurs when a load instruction produces a result used in the very 
next instruction. That situation occurs once in this program and requires one no-op: 
 
loop: add $t0, $t1, $t2 
  lw $t3, 10($t0) 

lw $t4, 14($t0) 
nop 
sub $t5, $t4, $t3 
sw $t5, 18($t0) 
addi $t2, $t2, 4 
slti $t6, $t2, 200 
bne $t6, $zero, loop 

 
Using the same logic as above, this 9-instruction sequence takes 5 + (9-1) = 13 cycles 
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5. (20 points) Dynamic branch prediction 
a. (14 points) Say you are executing a program that contains two branches, as shown 

below. You are given the addresses of each branch in both decimal and hexadecimal. 
 

Address   
Decimal Hex   

8 0x08 loop … 
   … 

20 0x14  BNE R4, R0, else 
   … 

44 0x2C  BEQ R7, R8, loop 
 
Your processor contains a four-entry, 2-bit branch history table. Initially, entry 0 (the 
first line of the table) has the state 01, entry 1 is 11, entry 2 is 10, and entry 3 is 00. 
 
Complete the table below to show which BHT entry is used to predict each branch, what 
predictions are made based on that entry, and how the state of each BHT entry changes 
throughout the program. You are given the actual outcome for each branch. 
 
Solution: Note that, to determine the BHT entry number in the 4-entry table, you must 
use the 2 lowest-order address bits that actually change—the lowest two bits of every 
instruction address are always 0. Therefore, the BNE at address 20 = 0001 01002 accesses 
entry 1, and the BEQ at address 44 = 0010 11002 accesses entry 3. 

Students were responsible for completing the table entries with underlined, bold-faced 
font. 

 
Loop 

Iteration Branch 
BHT 
Entry  

# 

BHT 
Entry 
State 

Pred. Actual 
Outcome 

New BHT 
Entry 
State 

1 BNE 1 11 T NT 10 

1 BEQ 3 00 NT T 01 

2 BNE 1 10 T T 11 

2 BEQ 3 01 NT T 11 

3 BNE 1 11 T NT 10 

3 BEQ 3 11 T T 11 

4 BNE 1 10 T T 11 

4 BEQ 3 11 T NT 10 
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5 (continued) 
b. (6 points) Assume you have a (2,2) correlating predictor in the state shown below: 
 

00  01  10  11 
10  01  01  10 
11  10  01  00 
01  01  11  10 
       
  1 0   

 
If we have a branch at address 40 (0x28 in hex), what entry of the predictor will we 
access, and what will the prediction be? As part of your answer, circle the appropriate 
entry above, and briefly explain how we determine which entry to access. 
 
Solution: 
To determine which entry is accessed, we use the global history (shown at the bottom of 
the predictor) to choose a column (a specific BHT within the correlating predictor), and 
the address of the branch to choose a line within that BHT. 
 
We can see that the global history is 10, which means that column 2 (highlighted in red) 
is the column used for this prediction. (We assume the leftmost column is column 0.) 
 
As for the row, we need to choose the appropriate bits of the branch address. Note that 
each BHT has 4 = 22 rows, so 2 bits from the address are needed. Remember that we do 
not use the two least significant bits, which will always be 0 in a system with 32-bit 
instructions. We therefore choose the next two bits. If we look at the binary value of the 
branch address: 
 
 40 = 0x28 = 0010 1000 
 
we can see that the bits used to choose a row are also 10, so we’ll choose row 2, 
highlighted in blue above. The appropriate entry, which is equal to 01, is highlighted in 
purple. The branch will be predicted as not taken. 
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6. (22 points) Dependences and dynamic scheduling 
Answer the following questions about the code sequence below: 
 

I0:  ADD.D  F4, F2, F6 
I1:  L.D   F8, 0(R1) 
I2:  L.D   F2, 8(R1) 
I3:  MUL.D F6, F8, F4 
I4:  ADD.D F4, F6, F2 
I5:   DADDUI R1, R1, #16 
I6:  S.D  F4, 0(R1)  
I7:  SLTI  R2, R1, #160 
I8:  BNEZ  R2, I0 

  
a. (8 points) List all true data dependences in this code. Assume the branch at the end of 
the loop is taken at least once. List your dependences in the form: 

 
<register number>:<producing inst.>  <consuming inst.> 
 

For example, a dependence involving R1 between “I2” and “I3” would be listed as: 
 
R1: I2I3 

 
Your list should only contain true dependences—do not list any name dependences. 
 
 
Solution: Note there are five loop-carried dependences, indicated below with “(LC)”. 

 F4: I0I3  
 F8: I1I3 
 F2: I2I4 
 F2: I2I0 (LC) 
 F6: I3I4 
 F6: I3I0 (LC) 
 F4: I4I6 
 R1: I5I6 
 R1: I5I7 
 R1: I5I1 (LC) 
 R1: I5I2 (LC) 
 R1: I5I5 (LC) 
 R2: I7I8 
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6 (continued) 
b. (9 points) Complete the pipeline diagram below to show how one iteration of the loop shown in part (a) is executed on a 

dynamically scheduled processor without speculation. Assume the following latencies, which refer to the number of execution 
cycles unless otherwise noted: 

• 3 cycles (1 EX, 2 MEM) for L.D and S.D 
• 2 cycles for ADD.D and SUB.D 
• 6 cycles for MUL.D 
• 2 cycles for DADDUI 
• 1 cycle for all other instructions 

Solution: The full pipeline diagram is below. Note that the S.D instruction presents an interesting case, as you must stall both the EX 
and memory stages for different reasons. The stall before EX is due to the wait for R1, which is used in the address computed in that 
stage. The stalls before M1 occur because the store needs the result of the second ADD.D, which finishes in cycle 15. 

 
Inst. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

ADD.D 
F4,F2,F6 IF IS E1 E2 WB                

L.D 
F8,0(R1)  IF IS EX M1 M2 WB              

L.D 
F2,8(R1)   IF IS EX M1 M2 WB             

MUL.D 
F6,F8,F4    IF IS S E1 E2 E3 E4 E5 E6 WB        

ADD.D 
F4,F6,F2     IF IS S S S S S S E1 E2 WB      

DADDUI 
R1,R1,#16      IF IS E1 E2 WB           

S.D 
F4,0(R1)       IF IS S EX S S S S M1 M2     

SLTI 
R2,R1,#160        IF IS EX WB          

BNEZ 
R2,Loop         IF IS EX          
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6 (continued) 
c. (5 points) Explain the difference between instruction completion and instruction commit. 

Why must instructions go through these two different cycles in a processor using speculative 
execution? 

 
Solution: Instruction completion occurs when an instruction finishes execution and writes its 
result on the common data bus. Instruction commit occurs when an instruction updates the 
permanent state of the processor, i.e., registers or memory. We separate these two stages in a 
speculatively executing processor so that instructions may still proceed before being 
conclusively marked as non-speculative (control dependent on a correctly predicted branch). 
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