
16.482 / 16.561: Computer Architecture and Design
Spring 2014

Final Exam Solution

1. (19 points) Multithreading
a. (4 points) Assume you have three threads concurrently executing on your system. Under what
circumstances would coarse-grained multithreading give the lowest total execution time for all
three threads? Under what circumstances would fine-grained multithreading give the lowest
total execution time?

Solution: Coarse-grained multithreading has two major benefits: it hides long-latency stalls and
allows threads with few stalls to run to completion. If we have a situation where at least one
thread has long latency stalls and another thread can hide those stalls by running steadily, coarse-
grained multithreading is the best bet.

Fine-grained multithreading maximizes fairness among threads. In a situation where all threads
have stalls that are roughly the same length, fine-grained multithreading would be the best pick.

b. (15 points) Given the 3 threads below, determine how long they take to execute using
simultaneous multithreading on a processor with the following characteristics:

• 4 functional units: 2 ALUs, 1 memory port (load/store), 1 branch
o Note: The ALUs can handle MUL.D operations

• In-order execution
• The following instruction latencies:

o L.D/S.D: 3 cycles (1 EX, 2 MEM)
o MUL.D: 4 cycles
o ADD.D/SUB.D: 2 cycles
o All other operations: 1 cycle

• Thread 1 is the preferred thread, followed by Thread 2 and Thread 3.
• Assume all branches are not taken.

Your solution should use the table on the next page, which contains columns to show each cycle,
the functional units being used during that cycle, and space to indicate stall cycles. Note that you
only need to label a cycle as a stall if all active threads are stalled. Clearly indicate which
thread contains each instruction when completing the table, but you do not have to write
the full instruction—writing the opcode (i.e. L.D, ADD.D) is sufficient.

Thread 1:
L.D F0, 0(R1)
L.D F2, 8(R1)
ADD.D F4, F0, F2
SUB.D F6, F4, F2
S.D F6, 16(R1)
DSUBUI R1, R1, #16
BNEZ R1, loop

Thread 2:
L.D F2, 0(R1)
MUL.D F2, F0, F2
DADDI R1, R1, #16
ADD.D F10, F8, F2
S.D F10, -8(R1)
DSUB R20, R4, R1
BNZ R20, Loop

Thread 3:
ADD.D F4, F0, F2
SUB.D F6, F2, F6
ADD.D F8, F0, F4
MUL.D F10, F4, F6
DADDUI R1, R1, #16
S.D F10, -16(R1)
BNE R1, R2, loop

 2

QUESTION 1b SOLUTION

Cycle ALU1 ALU2 Mem1 Branch Stalls?
1 T3: ADD.D

F4,F0,F2
T3: SUB.D
F6,F2,F6

T1: L.D
F0,0(R1)

2 T1: L.D

F2,8(R1

3 T3: ADD.D
F8,F0,F4

T3: MUL.D
F10,F4,F6

T2: L.D
F2, 0(R1)

4 T3: DADDUI

R1,R1,#16

5 T1: ADD.D
F4,F0,F2

6 T2: MUL.D

F2,F0,F2
T2: DADDI
R1,R1,#16

7 T1: SUB.D

F6,F4,F2
 T3: S.D

F10,-16(R1)
T3: BNE
R1,R2,loop

8 Stall

9 T1: DSUBUI
R1,R1,#16

 T1: S.D
F6,16(R1)

10 T2: ADD.D

F10,F8,F2
 T1: BNEZ

R1, loop
11
12 T2: DSUB

R20,R4,R1
 T2: S.D

F10,-8(R1)

13 T2: BNZ
R20,Loop

14
15
16
17
18
19
20

 3

2. (26 points) Caches
You are given a system which has an 8-byte, write-back cache with 4-byte blocks. The cache is
direct-mapped. All memory accesses use 7-bit addresses.

a. (18 points) Assume the initial memory state shown below for the first 16 bytes:

Address Address
0 20 8 15
1 8 9 67
2 27 10 78
3 3 11 19
4 12 12 26
5 44 13 99
6 34 14 9
7 5 15 4

For each access in the sequence listed below, fill in the cache state, indicate what register (if
any) changes, and indicate if any memory blocks are written back and if so, what addresses and
values are written. The cache state should carry over from one access to the next. Assume the
cache is initially empty.

Solution: Changed state shown in bold; invalid lines left empty for clarity

Access Modified
register

Cache state Modified
mem. block V D Tag Data

lb $t0,2($zero) $t0 = 27
1 0 00 20 8 27 3

None
0

sb $t0,12($zero) None
1 0 00 20 8 27 3

None
1 1 01 27 99 9 4

lb $t1,5($zero) $t1 = 44
1 0 00 20 8 27 3 Addr: 12-15

data: 27 99 9 4 1 0 00 12 44 34 5

sb $t1,4($zero) None
1 0 00 20 8 27 3

None
1 1 00 44 44 34 5

lb $t0,3($zero) $t0 = 3
1 0 00 20 8 27 3

None
1 1 00 44 44 34 5

 4

2 (continued)
b. (8 points) Assume the access sequence above is part of a loop, which executes five times. The

remainder of the program contains no data memory accesses. Calculate the average memory
access time for this program and system if the cache takes 3 cycles to access and the memory
takes 250 cycles to access. Assume those are the only two levels in the memory hierarchy.

Solution: On its initial pass, shown above, the access sequence produces three cache misses (the
first three accesses) and two cache hits (the last two accesses). However, to solve this problem
correctly, you have to note that the first load is actually a hit on subsequent loop iterations,
because that block (addresses 0-3) will remain in the cache for the duration of the loop.
Therefore, each of the remaining four loop iterations produces two misses and three hits, for a
total of 3 + (2×4) = 11 misses and 2 + (3×4) = 14 hits in the 25 total accesses.

You can now find the average memory access time in two different ways:

1. Calculate the total time required for all accesses, then divide by 25: Each hit takes 3 cycles;

each miss takes 3 + 250 = 253 cycles, so the total time required is:

 14×3 + 11×253 = 2825 cycles

 and the AMAT is 2825 / 25 = 113 cycles

2. Plug in the appropriate values to the AMAT equation: Since we have just a two-level

hierarchy, using this equation is simple. The hit time is 3 cycles, the miss rate is (11/25) =
0.44, and the miss penalty is 250 cycles—the time to access memory. Therefore:

 AMAT = (hit time) + (miss rate) × (miss penalty)
 = 3 + (0.44) × (250) = 3 + 110 = 113 cycles

 5

3. (18 points) Virtual memory
Answer the following questions about a process using the page table below:

Virtual
page # Valid bit Reference

bit Dirty bit Frame #
0 1 1 1 12
1 0 0 0 --
2 1 0 1 5
3 1 0 0 8
4 0 0 0 --
5 1 1 0 2

a. (3 points) Explain the purpose of the reference bits, including conditions under which those
bits are set and cleared.

Solution: Reference bits indicate whether a given page has been accessed relatively recently; if
the reference bit for a page is 0 when an eviction is required, that page is a candidate to be
evicted from main memory.

b. (9 points) Assuming 16-bit addresses and 512 byte pages, what physical addresses would the

virtual addresses below map to? Note that some virtual addresses may not have a valid
translation, in which case you should note that address causes a page fault.

Note: 512 B = 29 byte pages have an 9-bit page offset and a (16-9) = 7-bit page number.

• 0x0A16

Solution: 0x0A16 = 0000 1010 0001 01102  page # = 00001012 = 5
 Frame # = 2 = 0000010  physical address = 0000 0100 0001 01102 = 0x0416

• 0x02FE

Solution: 0x02FE = 0000 0010 1111 11102  page # = 00000012 = 1  page fault

• 0x011B

Solution: 0x011B = 0000 0001 0001 10112  page # = 00000002 = 0
 Frame # = 12 = 0001100  physical address = 0001 1001 0001 10112 = 0x191B

 6

3 (continued)
c. (6 points) Fill in the table at the bottom of the page to show the final state of the page table
after the following sequence of accesses. Assume main memory has 16 frames, numbered 0-15,
and frame 15 is the only frame that is free before this sequence executes. The initial state of the
page table is repeated below for your reference.

ACCESS SEQUENCE

• Read page 1  Page fault; page 15 allocated to frame 1; Valid = Ref = 1; Dirty = 0
• Write page 3  Dirty = Ref = 1; all other bits unchanged
• Write page 5  Dirty = 1; all other bits unchanged
• Read page 4  Page fault; page 2 evicted (only valid page with Ref = 0)

 Frame 5 allocated to Page 4; Valid = Ref = 0

INITIAL PAGE TABLE STATE:

Virtual
page # Valid bit Reference

bit Dirty bit Frame #
0 1 1 1 12
1 0 0 0 --
2 1 0 1 5
3 1 0 0 8
4 0 0 0 --
5 1 1 0 2

FINAL PAGE TABLE STATE:

Virtual
page # Valid bit Reference

bit Dirty bit Frame #
0 1 1 1 12

1 1 1 0 15
2 0 0 0 --
3 1 1 1 8
4 1 1 0 5
5 1 1 1 2

 7

4. (13 points) Cache optimizations
Use the following page to answer only 1 of the following 2 questions—part (a) or part (b).
Clearly indicate which question you have chosen to answer at the top of the page.

a. (Way prediction) Consider the following two caches for use in a system:

• A direct mapped cache with an access time of 2 ns and an average hit rate of 90%
• A four-way set associative cache with an access time of 6 ns and an average hit rate of

95%.

Assume the cache miss penalty for the system is 100 ns.

We want to use way prediction to improve the performance of the set associative cache. If a way
prediction hit takes as long as a direct-mapped access, and a way-prediction miss adds an
additional 6 ns, how accurate must the way predictor be to match the average access time of the
direct-mapped cache?

Solution: To solve this problem, we have to calculate average memory access times. Recall that
the formula for AMAT is:

 AMAT = (hit time) + (miss rate)(miss penalty)

For the direct-mapped case, this value is simple to calculate—our hit time is 2 ns, the miss rate is
(100%-90%) = 10% = 0.1, and the miss penalty is 100 ns:

 AMAT = (2 ns) + (0.1)(100 ns) = 2 ns + 10 ns = 12 ns

For the way-predicted case, the miss rate is (100%-95%) = 5% = 0.05 and the miss penalty
remains the same. The hit time has become more complex. Way predictor hits take 2 ns; way
predictor misses take 2 + 6 = 8 ns. If we call HRway the success rate of the way predictor (the
unknown for which we need to solve), we can then write the hit time as:

 (HRway)(2 ns) + (1 – HRway)(8 ns)

The question asks you to find the way predictor success rate that will give the same access
time—12 ns—as the direct-mapped case, so we must solve the following equation to get HRway:

 ((HRway)(2 ns) + (1 – HRway)(8 ns)) + (0.05)(100 ns) = 12 ns

 2HRway + 8 – 8HRway + 5 = 12
 -6HRway + 13 = 12
 -6HRway = -1

 HRway = -1 / -6 = 1/6 = 16.666…%

 8

b. (Multi-banked/non-blocking caches) Assume we have a system containing 32 blocks of
memory, numbered 0-31. This system has an 8-line, direct-mapped cache that is initially empty.
Assume we have a program that accesses 10 of these blocks in the following order, with one
access initiated per cycle unless a stall occurs:

4, 5, 1, 2, 24, 25, 26, 27, 16, 12

Note that all of these accesses are misses; each miss takes 10 cycles to handle.

i. (3 points) Calculate the total time for these 10 accesses if the cache is not split into banks
and is therefore a blocking cache (i.e., only one miss can be handled at a time).

Solution: Since each access causes the cache to block, they cannot be overlapped. The total time
is therefore: (10 cycles per access) * (10 accesses) = 100 cycles.

ii. (5 points) Calculate the total time for these 10 accesses if the cache is divided evenly into two

banks. Assume the blocks are not interleaved sequentially, so blocks are mapped to cache
lines using normal direct mapping. In other words, B0 maps to cache line 0, B1 to cache line
1, and so on.

Solution: Remember, accesses to different banks can be overlapped and will start in consecutive
cycles (for example, if an access to one bank starts in cycle i, the next access can start in cycle
i+1). Since we are not using sequential interleaving, the blocks are mapped to cache lines—and
therefore to banks—as shown in the table below:

Line # Blocks mapped to this line
0 0, 8, 16, 24

Bank 0 1 1, 9, 17, 25
2 2, 10, 18, 26
3 3, 11, 19, 27

4 4, 12, 20, 28

Bank 2 5 5, 13, 21, 29
6 6, 14, 22, 30
7 7, 15, 23, 31

Now, we can determine the total access time by looking at each access and determining which
ones can be overlapped. Note that up to 2 accesses can be overlapped—1 per bank.

 9

5.a.ii (continued)
The table below shows each access, the bank it accesses, and the start and end time of those
accesses. In total, the sequence takes 82 cycles given this cache organization.

Block # Bank Start cycle End cycle
4 1 1 10
5 1 11 20
1 0 12 21
2 0 22 31

24 0 32 41
25 0 42 51
26 0 52 61
27 0 62 71
16 0 72 81
12 1 73 82

iii. (5 points) Calculate the total time for these 10 accesses if the cache is divided evenly into two

banks and the blocks are interleaved sequentially across those two banks.

Solution: With sequential interleaving, we have the following mapping:

Line # Blocks mapped to this line
0 0, 8, 16, 24

Bank 0 1 2, 10, 18, 26
2 4, 12, 20, 28
3 6, 14, 22, 30

4 1, 9, 17, 25

Bank 2 5 3, 11, 19, 27
6 5, 13, 21, 29
7 7, 15, 23, 31

As shown in the table below, the sequence will take 60 cycles given this cache organization.

Block # Bank Start cycle End cycle
4 0 1 10
5 1 2 11
1 1 12 21
2 0 11 20

24 0 21 30
25 1 22 31
26 0 31 40
27 1 32 41
16 0 41 50
12 0 51 60

 10

5. (10 points) RAID
You are working with a 5-disk RAID array that contains a total of 15 sectors; the exact sector
configuration depends on the RAID level used. In all cases, twelve of the fifteen sectors (S0-S11)
will hold data, while the remaining three sectors (P0-P2) hold parity information. Large reads
and writes take 200 ms, small reads take 50 ms, and small writes take 100 ms.

Given the following sequence of sector reads and writes, determine the time required if the array
is configured with RAID 3, RAID 4, and RAID 5. Assume the following:

• Requests are queued in such a manner that two consecutive operations may proceed
simultaneously if they do not share any disk within the array.

• If two disks, Dx and Dy, are in use, and the access to Dx finishes before the access to Dy, a
new operation may start immediately assuming it does not involve Dy.

1. read S2
2. read S10
3. write S9
4. read S4
5. read S8
6. write S7
7. write S9
8. read S2

In each case, show the organization of the array to support your answer. The next page contains
additional space to solve this problem.

Solution: Taking each of these one at a time:

• In RAID 3, only large reads and writes are allowed. Since each operations involve every
disk, no operations may be overlapped, and the total time for 8 large reads and writes is 8
x 200 ms = 600 ms.

• In RAID 4, you may perform small reads, but only large writes. Therefore, any two
consecutive reads that do not use the same disk can proceed in parallel. We assume the
following organization:

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

S0 S1 S2 S3 P0

S4 S5 S6 S7 P1

S8 S9 S10 S11 P2

In this particular problem, all pairs of consecutive reads (S2/S10, S4/S8) involve the
same disk and cannot be overlapped. They will, however, take less time than in RAID 3
because these operations can be performed as small reads. The time required for this
sequence is therefore:

 11

 Time to read S2 (small read) 50 ms
 Time to read S10 (small read) 50 ms

Time to write S9 (large write) 200 ms
 Time to read S4 (small read) 50 ms
 Time to read S8 (small read) 50 ms

Time to write S7 (large write) 200 ms
Time to write S9 (large write) 200 ms

+ Time to read S2 (small read) 50 ms
 TOTAL 850 ms

• In RAID 5, both small reads and writes are allowed. This means that we can overlap any

two consecutive operations that do not share the same disk. Remember that RAID 5 also
involves interleaved parity, which makes small writes more feasible, so the organization
would change as follows:

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5
S0 S1 S2 S3 P0

S4 S5 S6 P1 S7

S8 S9 P2 S10 S11

Note also that the problem states we can start a new transaction any time an existing
transaction ends, provided the new transaction does not use the same disk as a currently
executing transaction. Note that we must be careful. Although RAID 5 does enable small
writes, these operations use two disks—the disk being written and the parity disk for that
stripe. The solution to this part of the problem therefore becomes more complex and can
best be described by tracking start and end times for each operation:

Operation Start
time

End
time Notes

read S2 1 50 Overlap reads on different disks
read S10 1 50
write S9 51 150 S8 on same disk as S4, so no overlap for those

reads. Both reads can overlap write to S9, which
uses disks 2 and 3.

read S4 51 100
read S8 101 150
write S7 151 250 These two can overlap because both transactions

involve different data and parity disks—the first
write uses Disks 4 and 5, while the second uses
Disks 2 and 3

write S9 151 250

read S2 251 300

In RAID 5, this sequence takes 300 ms.

 12

6. (14 points) Coherence protocols

a. Solve either part (a) or part (b)—NOT BOTH
(Snooping coherence protocols) You are given a four-processor system that uses a write-
invalidate, snooping coherence protocol. Each direct-mapped, write-back cache has four lines,
each of which holds eight bytes; in the diagram below, only the least-significant byte of each
word is shown. The cache states are I (invalid), S (shared), and M (modified/exclusive).

The caches and memory have the following initial state; please note that all addresses and tags
are shown in hexadecimal:

P0 P1
 State Tag Data State Tag Data
B0 I 0x100 01 23 B0 I 0x100 01 23
B1 S 0x108 00 88 B1 M 0x128 AB CD
B2 M 0x110 00 30 B2 S 0x130 14 12
B3 I 0x118 00 10 B3 S 0x118 14 92

P2 P3
 State Tag Data State Tag Data
B0 S 0x120 13 31 B0 S 0x120 13 31
B1 S 0x108 00 88 B1 S 0x108 00 88
B2 I 0x130 51 55 B2 I 0x110 00 30
B3 I 0x138 01 38 B3 S 0x118 14 92

Memory
Address Data

0x100 00 00
0x108 00 88
0x110 20 08
0x118 14 92
0x120 13 31
0x128 FF FE
0x130 14 12
0x138 AB BA

For each of the transactions listed on the next page, use the table to list all cache blocks modified
and their final state, as well as all memory blocks modified and their final state. Assume each set
of transactions starts with the same initial state—in other words, your answer to part (2) does not
depend on your answer to part (1). However, you should track the state transitions of each block
throughout the problem.

Note: Your second handout contains an extra copy of the tables above.

 13

QUESTION 6a SOLUTION
Transaction(s) Cache blocks modified Memory blocks modified

1. (i) P1: read 0x110
 (ii) P2: read 0x110
 (iii) P3: read 0x110
 (iv) P0: write 0x110 55

(i) P0.B2: (S,0x110, 00 30)
 P1.B2: (S, 0x110, 00 30)
(ii) P2.B2: (S, 0x110, 00 30)
(iii) P3.B2: (S, 0x110, 00 30)
(iv) P0.B2: (M, 0x110, 55 30)
 P1.B2: (I, 0x110, 00 30)
 P2.B2: (I, 0x110, 00 30)
 P3.B2: (I, 0x110, 00 30)

(i) M[0x110]: (00 30)

2. (i) P3: write 0x11045
 (ii) P0: write 0x11067
 (iii) P3: read 0x114
 (iv) P0: read 0x114

(i) P0.B2: (I, 0x110, 00 30)
 P3.B2: (M, 0x110, 45 30)
(ii) P0.B2: (M, 0x110, 67 30)
 P3.B2: (I, 0x110, 45 30)
(iii) P0.B2: (S, 0x110, 67 30)
 P3.B2: (S, 0x110, 67 30)
(iv) No change

(i) M[0x110]: (00 30)
(ii) M[0x110]: (45 30)
(iii) M[0x110]: (67 30)

 14

6 (continued)

b. Solve either part (a) or part (b)—NOT BOTH
(Directory protocols) Say we have a four-processor system that uses a write-invalidate, directory
coherence protocol. The system contains a total of 8 memory blocks, as shown in the initial
directory state below:

Block # P0 P1 P2 P3 Dirty
0 1 0 1 0 0
1 0 1 0 0 1
2 0 0 0 0 0
3 0 1 1 1 0
4 0 0 0 1 1
5 1 1 0 0 0
6 0 1 0 0 1
7 1 1 1 1 0

For all sequences of transactions shown on the next page, list all messages sent as well as the
final directory state for the block(s) in question. You should assume that each sequence of
accesses is independent—your answer to part 2 does not depend on part 1—but accesses within a
sequence are dependent on one another—your answer for part 1, access (ii) does depend on what
happens in part 1, access (i).

Note: Your second handout contains an extra copy of the directory state above.

 15

QUESTION 6b SOLUTION

Transaction(s) Messages sent
Final directory state

(shown as
[P0,P1,P2,P3,Dirty])

1. P0: read block 1
 P2: read block 1
 P3: write block 1
 P3: read block 1

(i) ReadMiss(P0,1) to directory
 Fetch(1) from directory to P1

DataWriteBack(1,mem[1]) from P1 to directory
DataValueReply(mem[1]) from directory to P0

(ii) ReadMiss(P2,1) to directory
 DataValueReply(mem[1]) from directory to P2

(iii) WriteMiss(P3,1) to directory
 Invalidate(1) from directory to P0, P1, and P2
 DataValueReply(mem[1]) from directory to P3

(iv) No messages—access is a hit

Block 1:
[0, 0, 0, 1, 1]

2. P0: write block 2
 P1: read block 2
 P2: read block 2
 P3: write block 2

(i) WriteMiss(P0,2) to directory
 DataValueReply(mem[2]) from directory to P0

(ii) ReadMiss(P1,2) to directory
 Fetch(2) from directory to P0
 DataWriteBack(2,mem[2]) from P0 to directory
 DataValueReply(mem[2]) from directory to P1

(iii) ReadMiss(P2,2) to directory
 DataValueReply(mem[2]) from directory to P2

(iv) WriteMiss(P3,2) to directory
 Invalidate(2) from directory to P0, P1, and P2
 DataValueReply(mem[2]) from directory to P3

Block 2:
[0, 0, 0, 1, 1]

	Final Exam Solution

