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Spring 2014 

 
Final Exam Solution 

 
1. (19 points) Multithreading 
a. (4 points) Assume you have three threads concurrently executing on your system. Under what 
circumstances would coarse-grained multithreading give the lowest total execution time for all 
three threads? Under what circumstances would fine-grained multithreading give the lowest 
total execution time?  
 
Solution: Coarse-grained multithreading has two major benefits: it hides long-latency stalls and 
allows threads with few stalls to run to completion. If we have a situation where at least one 
thread has long latency stalls and another thread can hide those stalls by running steadily, coarse-
grained multithreading is the best bet. 
 
Fine-grained multithreading maximizes fairness among threads. In a situation where all threads 
have stalls that are roughly the same length, fine-grained multithreading would be the best pick. 
 
b. (15 points) Given the 3 threads below, determine how long they take to execute using 
simultaneous multithreading on a processor with the following characteristics: 

• 4 functional units: 2 ALUs, 1 memory port (load/store), 1 branch 
o Note: The ALUs can handle MUL.D operations 

• In-order execution 
• The following instruction latencies: 

o L.D/S.D: 3 cycles (1 EX, 2 MEM) 
o MUL.D: 4 cycles 
o ADD.D/SUB.D: 2 cycles 
o All other operations: 1 cycle 

• Thread 1 is the preferred thread, followed by Thread 2 and Thread 3. 
• Assume all branches are not taken. 

Your solution should use the table on the next page, which contains columns to show each cycle, 
the functional units being used during that cycle, and space to indicate stall cycles. Note that you 
only need to label a cycle as a stall if all active threads are stalled. Clearly indicate which 
thread contains each instruction when completing the table, but you do not have to write 
the full instruction—writing the opcode (i.e. L.D, ADD.D) is sufficient. 

Thread 1: 
L.D F0, 0(R1) 
L.D F2, 8(R1) 
ADD.D F4, F0, F2 
SUB.D F6, F4, F2 
S.D F6, 16(R1) 
DSUBUI R1, R1, #16 
BNEZ R1, loop 

Thread 2: 
L.D F2, 0(R1)  
MUL.D F2, F0, F2 
DADDI R1, R1, #16 
ADD.D F10, F8, F2  
S.D F10, -8(R1)   
DSUB R20, R4, R1  
BNZ R20, Loop   

Thread 3: 
ADD.D F4, F0, F2 
SUB.D F6, F2, F6 
ADD.D F8, F0, F4 
MUL.D F10, F4, F6 
DADDUI R1, R1, #16 
S.D F10, -16(R1) 
BNE R1, R2, loop 
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QUESTION 1b SOLUTION 
 

Cycle ALU1 ALU2 Mem1 Branch Stalls? 
1 T3: ADD.D 

F4,F0,F2 
T3: SUB.D 
F6,F2,F6 

T1: L.D 
F0,0(R1) 

  
2   T1: L.D 

F2,8(R1 
  

3 T3: ADD.D 
F8,F0,F4 

T3: MUL.D 
F10,F4,F6 

T2: L.D 
F2, 0(R1) 

  
4 T3: DADDUI 

R1,R1,#16 
    

5 T1: ADD.D 
F4,F0,F2 

    
6 T2: MUL.D 

F2,F0,F2 
T2: DADDI 
R1,R1,#16 

   
7 T1: SUB.D 

F6,F4,F2 
 T3: S.D 

F10,-16(R1) 
T3: BNE 
R1,R2,loop  

8     Stall 

9 T1: DSUBUI 
R1,R1,#16 

 T1: S.D 
F6,16(R1) 

  
10  T2: ADD.D 

F10,F8,F2 
 T1: BNEZ 

R1, loop  
11      
12 T2: DSUB 

R20,R4,R1 
 T2: S.D 

F10,-8(R1) 
  

13    T2: BNZ 
R20,Loop  

14      
15      
16      
17      
18      
19      
20      
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2. (26 points) Caches 
You are given a system which has an 8-byte, write-back cache with 4-byte blocks. The cache is 
direct-mapped. All memory accesses use 7-bit addresses. 
 
a. (18 points) Assume the initial memory state shown below for the first 16 bytes: 
 

Address   Address  
0 20  8 15 
1 8  9 67 
2 27  10 78 
3 3  11 19 
4 12  12 26 
5 44  13 99 
6 34  14 9 
7 5  15 4 

 
For each access in the sequence listed below, fill in the cache state, indicate what register (if 
any) changes, and indicate if any memory blocks are written back and if so, what addresses and 
values are written. The cache state should carry over from one access to the next. Assume the 
cache is initially empty. 
 
Solution: Changed state shown in bold; invalid lines left empty for clarity 
 

Access Modified  
register 

Cache state Modified  
mem. block V D Tag Data 

lb $t0,2($zero)  $t0 = 27 
1 0 00 20 8 27 3 

None 
0       

sb $t0,12($zero)  None 
1 0 00 20 8 27 3 

None 
1 1 01 27 99 9 4 

lb $t1,5($zero)  $t1 = 44 
1 0 00 20 8 27 3 Addr: 12-15 

data: 27 99 9 4 1 0 00 12 44 34 5 

sb $t1,4($zero)  None 
1 0 00 20 8 27 3 

None 
1 1 00 44 44 34 5 

lb $t0,3($zero)  $t0 = 3 
1 0 00 20 8 27 3 

None 
1 1 00 44 44 34 5 
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2 (continued) 
b. (8 points) Assume the access sequence above is part of a loop, which executes five times. The 

remainder of the program contains no data memory accesses. Calculate the average memory 
access time for this program and system if the cache takes 3 cycles to access and the memory 
takes 250 cycles to access. Assume those are the only two levels in the memory hierarchy. 

 
Solution: On its initial pass, shown above, the access sequence produces three cache misses (the 
first three accesses) and two cache hits (the last two accesses). However, to solve this problem 
correctly, you have to note that the first load is actually a hit on subsequent loop iterations, 
because that block (addresses 0-3) will remain in the cache for the duration of the loop. 
Therefore, each of the remaining four loop iterations produces two misses and three hits, for a 
total of 3 + (2×4) = 11 misses and 2 + (3×4) = 14 hits in the 25 total accesses. 
 
You can now find the average memory access time in two different ways: 
  
1. Calculate the total time required for all accesses, then divide by 25: Each hit takes 3 cycles; 

each miss takes 3 + 250 = 253 cycles, so the total time required is: 
  
 14×3 + 11×253 = 2825 cycles 
  
 and the AMAT is 2825 / 25 = 113 cycles 
 
2. Plug in the appropriate values to the AMAT equation: Since we have just a two-level 

hierarchy, using this equation is simple. The hit time is 3 cycles, the miss rate is (11/25) = 
0.44, and the miss penalty is 250 cycles—the time to access memory. Therefore: 

 
 AMAT  = (hit time) + (miss rate) × (miss penalty) 
  = 3 + (0.44) × (250) = 3 + 110 = 113 cycles 
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3. (18 points) Virtual memory 
Answer the following questions about a process using the page table below: 
 

Virtual 
page #  Valid bit  Reference 

bit  Dirty bit  Frame #  
0 1 1 1 12 
1 0 0 0 -- 
2 1 0 1 5 
3 1 0 0 8 
4 0 0 0 -- 
5 1 1 0 2 

 
a. (3 points) Explain the purpose of the reference bits, including conditions under which those 
bits are set and cleared. 
 
Solution: Reference bits indicate whether a given page has been accessed relatively recently; if 
the reference bit for a page is 0 when an eviction is required, that page is a candidate to be 
evicted from main memory.  
 
 
b. (9 points) Assuming 16-bit addresses and 512 byte pages, what physical addresses would the 

virtual addresses below map to? Note that some virtual addresses may not have a valid 
translation, in which case you should note that address causes a page fault. 

 
Note: 512 B = 29 byte pages have an 9-bit page offset and a (16-9) = 7-bit page number. 
 

• 0x0A16 
 
Solution:  0x0A16 = 0000 1010 0001 01102  page # = 00001012 = 5 
 Frame # = 2 = 0000010  physical address = 0000 0100 0001 01102 = 0x0416 

 
 
 

• 0x02FE 
 

Solution:  0x02FE = 0000 0010 1111 11102  page # = 00000012 = 1  page fault 
 
 
 

• 0x011B 
 
Solution:  0x011B = 0000 0001 0001 10112  page # = 00000002 = 0 
 Frame # = 12 = 0001100  physical address = 0001 1001 0001 10112 = 0x191B 
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3 (continued) 
c. (6 points) Fill in the table at the bottom of the page to show the final state of the page table 
after the following sequence of accesses. Assume main memory has 16 frames, numbered 0-15, 
and frame 15 is the only frame that is free before this sequence executes. The initial state of the 
page table is repeated below for your reference. 
 
ACCESS SEQUENCE 

• Read page 1  Page fault; page 15 allocated to frame 1; Valid = Ref = 1; Dirty = 0 
• Write page 3  Dirty = Ref = 1; all other bits unchanged 
• Write page 5  Dirty = 1; all other bits unchanged 
• Read page 4  Page fault; page 2 evicted (only valid page with Ref = 0) 

   Frame 5 allocated to Page 4; Valid = Ref = 0 
 
INITIAL PAGE TABLE STATE: 
 

Virtual 
page #  Valid bit  Reference 

bit  Dirty bit  Frame #  
0 1 1 1 12 
1 0 0 0 -- 
2 1 0 1 5 
3 1 0 0 8 
4 0 0 0 -- 
5 1 1 0 2 

 
 
 
FINAL PAGE TABLE STATE: 
 

Virtual 
page #  Valid bit  Reference 

bit  Dirty bit  Frame #  
0  1 1 1 12 

1  1 1 0 15 
2  0 0 0 -- 
3  1 1 1 8 
4 1 1 0 5 
5 1 1 1 2 
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4. (13 points) Cache optimizations 
Use the following page to answer only 1 of the following 2 questions—part (a) or part (b). 
Clearly indicate which question you have chosen to answer at the top of the page.  
 
a. (Way prediction) Consider the following two caches for use in a system:  

• A direct mapped cache with an access time of 2 ns and an average hit rate of 90% 
• A four-way set associative cache with an access time of 6 ns and an average hit rate of 

95%. 
 
Assume the cache miss penalty for the system is 100 ns. 
 
We want to use way prediction to improve the performance of the set associative cache. If a way 
prediction hit takes as long as a direct-mapped access, and a way-prediction miss adds an 
additional 6 ns, how accurate must the way predictor be to match the average access time of the 
direct-mapped cache?  
 
Solution: To solve this problem, we have to calculate average memory access times. Recall that 
the formula for AMAT is: 
 
 AMAT = (hit time) + (miss rate)(miss penalty) 
 
For the direct-mapped case, this value is simple to calculate—our hit time is 2 ns, the miss rate is 
(100%-90%) = 10% = 0.1, and the miss penalty is 100 ns: 
 
 AMAT = (2 ns) + (0.1)(100 ns) = 2 ns + 10 ns = 12 ns 
 
For the way-predicted case, the miss rate is (100%-95%) = 5% = 0.05 and the miss penalty 
remains the same. The hit time has become more complex. Way predictor hits take 2 ns; way 
predictor misses take 2 + 6 = 8 ns. If we call HRway the success rate of the way predictor (the 
unknown for which we need to solve), we can then write the hit time as: 
 
 (HRway)(2 ns) + (1 – HRway)(8 ns) 
 
The question asks you to find the way predictor success rate that will give the same access 
time—12 ns—as the direct-mapped case, so we must solve the following equation to get HRway: 
 
 ((HRway)(2 ns) + (1 – HRway)(8 ns)) + (0.05)(100 ns) = 12 ns 
 
 2HRway + 8 – 8HRway + 5 = 12 
 -6HRway + 13 = 12 
 -6HRway = -1 
 
 HRway = -1 / -6 = 1/6 = 16.666…% 
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b. (Multi-banked/non-blocking caches) Assume we have a system containing 32 blocks of 
memory, numbered 0-31. This system has an 8-line, direct-mapped cache that is initially empty. 
Assume we have a program that accesses 10 of these blocks in the following order, with one 
access initiated per cycle unless a stall occurs: 
 

4, 5, 1, 2, 24, 25, 26, 27, 16, 12 
 
Note that all of these accesses are misses; each miss takes 10 cycles to handle. 
 

i. (3 points) Calculate the total time for these 10 accesses if the cache is not split into banks 
and is therefore a blocking cache (i.e., only one miss can be handled at a time).  

 
Solution: Since each access causes the cache to block, they cannot be overlapped. The total time 
is therefore: (10 cycles per access) * (10 accesses) = 100 cycles. 
 

 
ii. (5 points) Calculate the total time for these 10 accesses if the cache is divided evenly into two 

banks. Assume the blocks are not interleaved sequentially, so blocks are mapped to cache 
lines using normal direct mapping. In other words, B0 maps to cache line 0, B1 to cache line 
1, and so on. 

 
Solution: Remember, accesses to different banks can be overlapped and will start in consecutive 
cycles (for example, if an access to one bank starts in cycle i, the next access can start in cycle 
i+1). Since we are not using sequential interleaving, the blocks are mapped to cache lines—and 
therefore to banks—as shown in the table below: 
 

Line # Blocks mapped to this line    
0 0, 8, 16, 24   

Bank 0 1 1, 9, 17, 25   
2 2, 10, 18, 26   
3 3, 11, 19, 27   
     

4 4, 12, 20, 28   

Bank 2 5 5, 13, 21, 29   
6 6, 14, 22, 30   
7 7, 15, 23, 31   

 
Now, we can determine the total access time by looking at each access and determining which 
ones can be overlapped. Note that up to 2 accesses can be overlapped—1 per bank. 
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5.a.ii (continued) 
The table below shows each access, the bank it accesses, and the start and end time of those 
accesses. In total, the sequence takes 82 cycles given this cache organization. 

Block # Bank Start cycle End cycle 
4 1 1 10 
5 1 11 20 
1 0 12 21 
2 0 22 31 

24 0 32 41 
25 0 42 51 
26 0 52 61 
27 0 62 71 
16 0 72 81 
12 1 73 82 

 
iii. (5 points) Calculate the total time for these 10 accesses if the cache is divided evenly into two 

banks and the blocks are interleaved sequentially across those two banks. 
 

Solution: With sequential interleaving, we have the following mapping: 

Line # Blocks mapped to this line    
0 0, 8, 16, 24   

Bank 0 1 2, 10, 18, 26   
2 4, 12, 20, 28   
3 6, 14, 22, 30   
     

4 1, 9, 17, 25   

Bank 2 5 3, 11, 19, 27   
6 5, 13, 21, 29   
7 7, 15, 23, 31   

 
As shown in the table below, the sequence will take 60 cycles given this cache organization. 

Block # Bank Start cycle End cycle 
4 0 1 10 
5 1 2 11 
1 1 12 21 
2 0 11 20 

24 0 21 30 
25 1 22 31 
26 0 31 40 
27 1 32 41 
16 0 41 50 
12 0 51 60 

 
 



 10 

5. (10 points) RAID 
You are working with a 5-disk RAID array that contains a total of 15 sectors; the exact sector 
configuration depends on the RAID level used. In all cases, twelve of the fifteen sectors (S0-S11) 
will hold data, while the remaining three sectors (P0-P2) hold parity information. Large reads 
and writes take 200 ms, small reads take 50 ms, and small writes take 100 ms.  
 
Given the following sequence of sector reads and writes, determine the time required if the array 
is configured with RAID 3, RAID 4, and RAID 5. Assume the following: 

• Requests are queued in such a manner that two consecutive operations may proceed 
simultaneously if they do not share any disk within the array. 

• If two disks, Dx and Dy, are in use, and the access to Dx finishes before the access to Dy, a 
new operation may start immediately assuming it does not involve Dy. 

 
1. read S2 
2. read S10 
3. write S9 
4. read S4 
5. read S8 
6. write S7 
7. write S9 
8. read S2 

 
In each case, show the organization of the array to support your answer. The next page contains 
additional space to solve this problem. 
 
Solution: Taking each of these one at a time: 

• In RAID 3, only large reads and writes are allowed. Since each operations involve every 
disk, no operations may be overlapped, and the total time for 8 large reads and writes is 8 
x 200 ms =  600 ms. 

• In RAID 4, you may perform small reads, but only large writes. Therefore, any two 
consecutive reads that do not use the same disk can proceed in parallel. We assume the 
following organization: 

 
Disk 1  Disk 2  Disk 3  Disk 4  Disk 5 

S0  S1  S2  S3  P0 
         

S4  S5  S6  S7  P1 
         

S8  S9  S10  S11  P2 
 

In this particular problem, all pairs of consecutive reads (S2/S10, S4/S8) involve the 
same disk and cannot be overlapped. They will, however, take less time than in RAID 3 
because these operations can be performed as small reads. The time required for this 
sequence is therefore: 
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 Time to read S2 (small read)  50 ms 
 Time to read S10 (small read)  50 ms 

Time to write S9 (large write)  200 ms 
 Time to read S4 (small read)  50 ms 
 Time to read S8 (small read)  50 ms 

Time to write S7 (large write)  200 ms 
Time to write S9 (large write)  200 ms 

+ Time to read S2 (small read)  50 ms   
  TOTAL    850 ms 

 
• In RAID 5, both small reads and writes are allowed. This means that we can overlap any 

two consecutive operations that do not share the same disk. Remember that RAID 5 also 
involves interleaved parity, which makes small writes more feasible, so the organization 
would change as follows: 
 

Disk 1  Disk 2  Disk 3  Disk 4  Disk 5 
S0  S1  S2  S3  P0 

         
S4  S5  S6  P1  S7 

         
S8  S9  P2  S10  S11 

 
Note also that the problem states we can start a new transaction any time an existing 
transaction ends, provided the new transaction does not use the same disk as a currently 
executing transaction. Note that we must be careful. Although RAID 5 does enable small 
writes, these operations use two disks—the disk being written and the parity disk for that 
stripe. The solution to this part of the problem therefore becomes more complex and can 
best be described by tracking start and end times for each operation: 
 

Operation Start 
time 

End 
time Notes 

read S2 1 50 Overlap reads on different disks 
read S10 1 50 
write S9 51 150 S8 on same disk as S4, so no overlap for those 

reads. Both reads can overlap write to S9, which 
uses disks 2 and 3. 

read S4 51 100 
read S8 101 150 
write S7 151 250 These two can overlap because both transactions 

involve different data and parity disks—the first 
write uses Disks 4 and 5, while the second uses 
Disks 2 and 3 

write S9 151 250 

read S2 251 300  
 
In RAID 5, this sequence takes 300 ms. 
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6. (14 points) Coherence protocols 

a. Solve either part (a) or part (b)—NOT BOTH 
(Snooping coherence protocols) You are given a four-processor system that uses a write-
invalidate, snooping coherence protocol. Each direct-mapped, write-back cache has four lines, 
each of which holds eight bytes; in the diagram below, only the least-significant byte of each 
word is shown. The cache states are I (invalid), S (shared), and M (modified/exclusive). 
 
The caches and memory have the following initial state; please note that all addresses and tags 
are shown in hexadecimal: 
 

P0      P1     
 State Tag Data   State Tag Data 
B0 I 0x100 01 23  B0 I 0x100 01 23 
B1 S 0x108 00 88  B1 M 0x128 AB CD 
B2 M 0x110 00 30  B2 S 0x130 14 12 
B3 I 0x118 00 10  B3 S 0x118 14 92 
           
           
P2      P3     
 State Tag Data   State Tag Data 
B0 S 0x120 13 31  B0 S 0x120 13 31 
B1 S 0x108 00 88  B1 S 0x108 00 88 
B2 I 0x130 51 55  B2 I 0x110 00 30 
B3 I 0x138 01 38  B3 S 0x118 14 92 

 
Memory   
Address Data 

0x100 00 00 
0x108 00 88 
0x110 20 08 
0x118 14 92 
0x120 13 31 
0x128 FF FE 
0x130 14 12 
0x138 AB BA 

 
For each of the transactions listed on the next page, use the table to list all cache blocks modified 
and their final state, as well as all memory blocks modified and their final state. Assume each set 
of transactions starts with the same initial state—in other words, your answer to part (2) does not 
depend on your answer to part (1). However, you should track the state transitions of each block 
throughout the problem. 
 
Note: Your second handout contains an extra copy of the tables above.  
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QUESTION 6a SOLUTION 
Transaction(s) Cache blocks modified Memory blocks modified 

1. (i) P1: read 0x110 
    (ii) P2: read 0x110 
    (iii) P3: read 0x110 
    (iv) P0: write 0x110 55 
 
 
 
 
 

(i) P0.B2: (S,0x110, 00 30) 
    P1.B2: (S, 0x110, 00 30) 
(ii) P2.B2: (S, 0x110, 00 30) 
(iii) P3.B2: (S, 0x110, 00 30) 
(iv) P0.B2: (M, 0x110, 55 30) 
      P1.B2: (I, 0x110, 00 30) 
      P2.B2: (I, 0x110, 00 30) 
      P3.B2: (I, 0x110, 00 30) 

(i) M[0x110]: (00 30) 

2. (i) P3: write 0x11045 
    (ii) P0: write 0x11067 
    (iii) P3: read 0x114 
    (iv) P0: read 0x114 
 
 
 
 
 
 

(i) P0.B2: (I, 0x110, 00 30) 
    P3.B2: (M, 0x110, 45 30) 
(ii) P0.B2: (M, 0x110, 67 30) 
     P3.B2: (I, 0x110, 45 30) 
(iii) P0.B2: (S, 0x110, 67 30) 
     P3.B2: (S, 0x110, 67 30) 
(iv) No change 

(i) M[0x110]: (00 30) 
(ii) M[0x110]: (45 30) 
(iii) M[0x110]: (67 30) 
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6 (continued) 

b. Solve either part (a) or part (b)—NOT BOTH 
(Directory protocols) Say we have a four-processor system that uses a write-invalidate, directory 
coherence protocol. The system contains a total of 8 memory blocks, as shown in the initial 
directory state below: 
 

Block # P0 P1 P2 P3 Dirty 
0 1 0 1 0 0 
1 0 1 0 0 1 
2 0 0 0 0 0 
3 0 1 1 1 0 
4 0 0 0 1 1 
5 1 1 0 0 0 
6 0 1 0 0 1 
7 1 1 1 1 0 

 
For all sequences of transactions shown on the next page, list all messages sent as well as the 
final directory state for the block(s) in question. You should assume that each sequence of 
accesses is independent—your answer to part 2 does not depend on part 1—but accesses within a 
sequence are dependent on one another—your answer for part 1, access (ii) does depend on what 
happens in part 1, access (i). 

 
Note: Your second handout contains an extra copy of the directory state above. 
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QUESTION 6b SOLUTION 
 

Transaction(s) Messages sent 
Final directory state 

(shown as 
[P0,P1,P2,P3,Dirty]) 

1. P0: read block 1 
    P2: read block 1 
    P3: write block 1 
    P3: read block 1 
 
 
 
 
 

(i) ReadMiss(P0,1) to directory 
    Fetch(1) from directory to P1 

DataWriteBack(1,mem[1]) from P1 to directory 
DataValueReply(mem[1]) from directory to P0 
 

(ii) ReadMiss(P2,1) to directory 
     DataValueReply(mem[1]) from directory to P2 
 
(iii) WriteMiss(P3,1) to directory 
      Invalidate(1) from directory to P0, P1, and P2 
      DataValueReply(mem[1]) from directory to P3 
 
(iv) No messages—access is a hit 
 

Block 1: 
[0, 0, 0, 1, 1] 

2. P0: write block 2 
    P1: read block 2 
    P2: read block 2 
    P3: write block 2 
 
 
 
 
 

(i) WriteMiss(P0,2) to directory 
    DataValueReply(mem[2]) from directory to P0 
 
(ii) ReadMiss(P1,2) to directory 
     Fetch(2) from directory to P0 
     DataWriteBack(2,mem[2]) from P0 to directory 
     DataValueReply(mem[2]) from directory to P1 
 
(iii) ReadMiss(P2,2) to directory 
      DataValueReply(mem[2]) from directory to P2 
 
(iv) WriteMiss(P3,2) to directory 
      Invalidate(2) from directory to P0, P1, and P2 
      DataValueReply(mem[2]) from directory to P3 
 

Block 2: 
[0, 0, 0, 1, 1] 
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