16.482 / 16.561: Computer Architecture and Design Fall 2014

Lecture 1: Key Questions September 4, 2014

1.	What information is required to translate a high-level statement such as X[i]=i*2; to
	assembly language?

2. Describe how a processor executes a typical instruction.

4. Describe the characteristics of a RISC architecture.

Fall 2014		Lecture 1: Key Questions
5.	Describe each of the addressing modes listed below:	
•	Immediate	
•	Register direct	
•	Register indirect	
	Register muneet	
•	Base + displacement	
•	PC-relative	

Instructor: M. Geiger

16.482/16.561: Computer Architecture & Design

9. Compare and contrast big-endian and little-endian data.

Instructor: M. Geiger

Lecture 1: Key Questions

• lh \$t1, 2(\$t0)

• lb \$t2, 1(\$t0)

• lbu \$t3, 0(\$t0)

• sh \$s0, 0(\$t0)

• sb \$s0, 3(\$t0)

16.482/16.561: Computer Architecture & Design
Fall 2014

Instructor: M. Geiger
Lecture 1: Key Questions

11. Describe the MIPS arithmetic and logical instructions.

12. Say t0 = 0x00000001, t1 = 0x00000004, t2 = 0xFFFFFFF. What are the results of the following instructions?

Instructor: M. Geiger Lecture 1: Key Questions

- sub \$t3, \$t1, \$t0
- addi \$t4, \$t1, 0xFFFF
- andi \$t5, \$t2, 0xFFFF
- sll \$t6, \$t0, 5
- slt \$t7, \$t0, \$t1
- lui \$t8, 0x1234

16.482/16.561: Computer Architecture & Design Fall 2014	Instructor: M. Geiger Lecture 1: Key Questions
13. Describe the different classes of MIPS branch instructions.	
14. Explain the use of pseudoinstructions in MIPS assembly.	
15. Describe the different jump instructions in MIPS.	