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16.482 / 16.561: Computer Architecture and Design 
Fall 2014 

Midterm Exam Solution 
 
1. (8 points) UEvaluating instructions 
Assume the following initial state prior to executing the instructions below. Note that the result 
of each instruction may depend on prior instructions. 

• $t4 = 0x0000000A, $t5 = 0x00000004, $t6 = 0x00101000 
• Contents of memory (all values are in hexadecimal) 

Address Lo   Hi 
0x00101600 AA 14 92 44 
0x00101604 08 22 11 13 

For each instruction below, list the changed register or memory location(s) and its new value. 
 add $s0, $t4, $t5 

 $s0 = $t4 + $t5 = 0x0000000A + 0x00000004 = 0x0000000E 

 ori $s0, $s0, 0xCC11 

 $s0 = $s0 OR 0xCC11 = 0x0000000E OR 0x0000CC11 = 0x0000CC1F 

 sh $s0, 0x606($t6) 

 Address = 0x606 + $t6 = 0x00000606 + 0x00101000 = 0x00101606 
 mem[0x00101606] = lowest halfword in $s0 = 0xCC1F 
  mem[0x00101604] = 0x0822CC1F (changed bytes underlined) 

 lb $s1, 0x600($t6) 

 Address = 0x600 + $t6 = 0x00000600 + 0x00101000 = 0x00101600 
 $s1 = sign-extended byte from mem[0x00101600] 
 mem[0x00101600] = 0xAA  $s1 = 0xFFFFFFAA 

 slt $s2, $t4, $t5 

 $s2 = 1 if ($t4 < $t5), $s2 = 0 otherwise 
 $t4 = 0x0000000A and $t5 = 0x00000004  $t4 > $t5  $s2 = 0 

 bne $s2, $zero, L 

 Branch to L if ($s2 ≠ $zero) 
 Since $s2 = $zero = 0, branch is not taken 
 
 sra $s1, $s1, 8 

 $s1 = $s1 >> 8 (keep sign) = 0xFFFFFFAA >> 8 = 0xFFFFFFFF 

L: addi $s1, $s1, -1 
 $s1 = $s1 – 1 = 0xFFFFFFFF – 1 = 0xFFFFFFFE 
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2. (16 points) Binary multiplication 
a. (6 points) The two multipliers discussed in class are shown below: 

 

 
  
Describe one major advantage of the optimized multiplier (on the left), and one major advantage 
of the tree multiplier (on the right). 
 
Solution: The descriptions below assume the multiplication of two n-bit values: 

The optimized multiplier uses less hardware than the tree multiplier—it requires only one adder, 
an n-bit register for the multiplicand, a 2n-bit shift register for the product/multiplier, and 
control logic. The tree multiplier also uses a 2n-bit register (to store the final result), the 
initial stage consists of n 2-bit AND gates, and the multiplier tree contains n-1 adders. 

The tree multiplier is faster than the optimized multiplier—it takes O(log2(n)) cycles, as opposed 
to O(n) cycles for the optimized multiplier. 
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b. (10 points) You are given A = -6 and B = 3. Assume each operand uses four bits. Show how 
the binary multiplication of A * B would proceed using the optimized multiplier. 

 
Solution: First of all, please note that this question was poorly formulated—I essentially asked 
you to do signed multiplication in a multiplier that can’t properly handle signed multiplication. If 
you simply plug in -6 = 10102 and 3 = 00112, you end up with 30 as your result if you follow the 
appropriate steps. Sign-extending your product/multiplier at each step doesn’t help, either—your 
result will be 14 in that case. 
 
The only way to therefore get a correct answer is to treat both values as positive and correct the 
signs after the fact. I’ve shown that solution below. However, because of the issues inherent in 
the problem, the grading was handled very, very leniently. 
 
Initially, product/multiplier = 00000011 (underlined bit determines next step) 
 
Step 1: LSB of product/multiplier = 1  add multiplicand into left half of register & shift right 
 00000011 
     + 0110 
 01100011 

00110001   Product/multiplier after shift 
 
Step 2: LSB = 1  add multiplicand into left half of register & shift right 
 00110001 
     + 0110 
 10010001 

01001000   Product/multiplier after shift 
 
Step 3: LSB = 0  shift right 

00100100   Product/multiplier after shift 
 
Step 3: LSB = 0  shift right 

00010010   Final result = 18 
 
After negation, -(000100102) = 111011012 + 1 = 111011102 = -18 
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3. (20 points) IEEE floating-point format  
Multiply the two IEEE single-precision floating-point values 0x40900000 and 0xc1480000. For 
full credit, you must show all work, including:  

• Convert the two values into binary 
• Perform the multiplication in binary, not decimal 
• Re-encode the result in IEEE single-precision format 

 
Solution: We break each given value into the three fields of a single-precision floating-point 
value: sign (1 bit), biased exponent (8 bits), and fraction (23 bits), then convert each value: 
 

0x40900000 = 0100 0000 1001 0000 0000 0000 0000 00002 
Sign = 0 (positive value) 
Biased exponent = 100000012 = 129 

  Actual exponent = [Biased exponent] – bias = 129 – 127 = 2 
  Fraction = 001 0000 0000 0000 0000 00002 = 0012 
 0x40900000 = 1.0012 × 22 = 4.510 

 
0xC1480000 = 1100 0001 0100 1000 0000 0000 0000 00002 

Sign = 1 (negative value) 
Biased exponent = 100000102 = 130 

  Actual exponent = [Biased exponent] – bias = 130 – 127 = 3 
  Fraction = 100 1000 0000 0000 0000 00002 = 10012 
 0xC0980000 = -1.10012 × 23 = -12.510 

 
To multiply these numbers: 
 

• Add exponents 
o 2 + 3 = 5 

• Multiply significands: 
o 1.0012 * 1.10012 = 1.11000012 

• Renormalize if necessary (not necessary in this case) 
• Determine sign 

o Positive * negative = negative 
• To convert back to single-precision format: 

o Sign = 1 (negative value) 
o Biased exponent = actual exponent + bias = 5 + 127 = 132 = 100001002 
o Fraction = 1100001 ... 0002 

 
Therefore, the final result is -1.11000012 × 25 = 0xC2610000 in single-precision format =  
-56.2510 
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4. (16 points) Datapaths and pipelining  

For all parts of this problem, show all work for full credit. 
 
a. (4 points) You are given two simple processors—one using a single-cycle design, the other a 

basic 5-stage pipeline—in which the instruction stages take the following amount of time: 

• Fetch (IF): 20 ns 
• Decode (ID): 25 ns 
• Execute (EX): 30 ns 
• Memory access (MEM): 40 ns 
• Write back (WB): 25 ns 

How much time does each processor take to execute a single instruction, from start to finish? 
 
Solution: In the single-cycle design, the cycle time—which is the time required to execute a 
single instruction—is the sum of all component stages: 20 + 25 + 30 + 40 + 25 = 140 ns 
 
In the pipelined design, the cycle time is determined by the longest stage (40 ns, for MEM), and 
each instruction takes 5 cycles, so the time for a single instruction is 5 * 40 = 200 ns. 
 
 
 
b. (4 points) Now, assume each processor is redesigned with a faster ALU that reduces the time 

for the EX stage to 20 ns. How much time does a single instruction take on the redesigned 
processors? Explain your answer. 

 
Solution: Changing a single stage affects the time for the single-cycle design—since the EX 
stage is now 10 ns faster, the time per instruction is also 10 ns faster, making it 130 ns. 
 
Changing a single stage only affects the pipelined design if that stage is the longest cycle. Since 
the longest cycle in this processor is the MEM stage, the change to the EX stage does not affect 
the overall time for a single instruction—it’s still 200 ns. 
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4 (continued) 
c. (8 points) Consider the following code sequence: 

 
lw $t0, 0($s1) 
add $t2, $t0, $s0 
lw $t1, 8($s1) 
add $t3, $t1, $s0 
xor $t4, $t2, $t3 
sw $t4, 16($s1) 
and $t5, $t2, $t3 
sw $t5, 16($s1) 

 
Determine the time required to execute this sequence on the pipelined processor from part (b), 
assuming that processor uses a 5-stage pipeline with forwarding. Express your answer in ns, not 
cycles. 
 
Solution: Recall that forwarding in a 5-stage pipeline resolves all potential data hazards except 
those due to a load instruction followed by a dependent add, which requires a single stall cycle 
between those instructions. This code sequence has two such pairs of instructions (the lw 
instructions followed by dependent adds), which essentially adds two no-op instructions. 
 
To determine the number of cycles, you could draw a pipeline diagram, or remember that a 
program with N instructions running on an M-stage pipeline takes M + (N-1) cycles. In this case, 
M = 5 and N = 10 (8 original instructions + 2 no-ops), giving a total of 5 + (10-1) = 14 cycles. 
 
Since each cycle takes 40 ns on this processor, the total execution time is 14 * 40 = 560 ns. 
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5. (21 points) Dynamic branch prediction 
a. (14 points) Say you are executing a program that contains two branches, as shown below. 

You are given the addresses of each branch in both decimal and hexadecimal. Note that these 
branches are inside a loop, but neither one controls the number of loop iterations. 

Address   
Decimal Hex   

148 0x94  BEQ $t0, $s0, label1 
   … 

236 0xEC  BNE $t5, $t6, label2 

Your processor contains a sixteen-entry, 2-bit branch history table. Initially, entries 0-7 (the first 
eight lines of the table) all have the state 10, and entries 8-15 (the last eight lines of the table) all 
have the state 01. 
 
Complete the table below to show which BHT entry is used to predict each branch, what 
predictions are made based on that entry, and how the state of each BHT entry changes 
throughout the program. You are given the actual outcome for each branch. 
 
Solution: Note that, to determine the BHT entry number in the 16-entry table, you must use the 
4 lowest-order address bits that actually change—the lowest two bits of every instruction address 
are always 0. Therefore, the BEQ at address 148 = 1001 01002 accesses entry 5, and the BNE at 
address 236 = 1110 11002 accesses entry 11. 

Students were responsible for completing the table entries with underlined, bold-faced font. 
 

Loop 
Iteration Branch 

BHT 
Entry  

# 

BHT 
Entry 
State 

Pred. Actual 
Outcome 

New BHT 
Entry 
State 

1 BEQ 5 10 T T 11 

1 BNE 11 01 NT NT 00 

2 BEQ 5 11 T NT 10 

2 BNE 11 00 NT T 01 

3 BEQ 5 10 T NT 00 

3 BNE 11 01 NT NT 00 

4 BEQ 5 00 NT T 01 

4 BNE 11 00 NT T 01 
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5 (continued) 
b. (4 points) How many entries are in an (8, 2) correlating branch predictor if the predictor 

uses 6 bits from each branch’s address to choose the appropriate row within the predictor? 
Show all work to justify your answer. 

 
Solution: A correlating predictor is essentially a two-dimensional array, where the row is chosen 
by the appropriate bits from the instruction address and the column is chosen by the global 
history. The number of instruction and global history bits therefore allows you to determine the 
size of the predictor: 
 

• Since 6 bits are used to determine the row within the predictor, there are 26 = 64 rows. 
• The (8, 2) notation tells you that there are 8 global history bits and each entry in the 

predictor contains 2 bits. Given 8 global history bits, there are 28 = 256 columns. 
 
Therefore, the total number of entries in the predictor is the product of the number of rows and 
columns: 
 
 64 * 256 = 26 * 28 = 214 = 16384 entries 
 
 
c. (3 points) Explain the purpose of a branch target buffer (BTB). 
 
Solution: A BTB stores the target addresses of recently taken branches. When a branch 
instruction is fetched, the BTB is checked to see if that branch’s target has been previously 
calculated. If the branch is predicted as taken, the target address stored in the BTB is used to 
determine the address of the next instruction to be fetched. 
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6. (19 points) Dynamic scheduling 
a. (3 points) What potential problems with dynamic scheduling are prevented using register 

renaming? 
 
Solution: Register renaming avoids issues that arise due to name dependences. Instructions that 
have no dataflow between them but use the same register names create potential hazards when 
those instructions are reordered. Specifically, anti-dependences, in which one instruction reads a 
register and a later instruction writes it, create potential write after read (WAR) hazards, while 
output dependences, in which two instructions write the same destination, create potential write 
after write (WAW) hazards. Both of these hazard types are prevented using register renaming. 
 
 
 
b. (3 points) Explain why instructions in dynamically scheduled processors do not have to 

execute the exact same stages for each instruction (for example, only loads and stores access 
memory, branches do not have a write back stage, etc.). 

 
Solution: In a basic 5-stage pipeline, all instructions use the exact same functional units as they 
progress through the five stages. However, in a dynamically scheduled processor, each 
instruction type essentially has its own execution pipeline. All instructions go through the same 
fetch (IF) and issue (IS) stages, but they are then issued to reservation stations, buffers associated 
with each type of functional unit that hold instructions waiting for their operands. Since the 
execution pipelines are separate, each one can be tailored to the specific types of operations that 
use that pipeline. 
 
 
 
c. (3 points) In a dynamically scheduled processor with speculation, why must instructions 

commit in order, even though they are allowed to complete out of order? 
 
Solution: Instructions are allowed to complete out of order to maintain the benefits of dynamic 
scheduling. However, each instruction is forced to commit (update the permanent state of the 
processor) in order so that the processor can easily recover from branch mispredictions. That 
process involves squashing all instructions that were incorrectly fetched after the mispredicted 
branch, which could not be done correctly if instructions were allowed to commit as soon as they 
finished computing their results. 
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a. (10 points) Complete the pipeline diagram below to show how the given code is executed on a dynamically scheduled processor 
without speculation. Assume the following latencies, which refer to the number of execution cycles unless otherwise noted: 

• 2 cycles (1 EX, 1 MEM) for L.D and S.D 
• 3 cycles for ADD.D and SUB.D 
• 5 cycles for MUL.D 
• 2 cycles for DADDUI 
• 1 cycle for all other instructions 

Also assume that the processor only contains one common data bus. Note that your solution may not use all 20 cycles shown below, 
but it should not use more than 20 cycles. 
Solution: The full pipeline diagram is below. Note that a potential structural hazard forces the SUB.D to stall its WB stage for one 
cycle, thus delaying the ADD.D and first S.D as well. Both stores can compute their addresses (in EX) immediately, but must stall 
their memory stages until the values to be stored are available. 

Inst. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
L.D 
F2,0(R1) IF IS EX M WB          

MUL.D 
F6,F2,F0  IF IS S E1 E2 E3 E4 E5 WB     

L.D 
F4,8(R1)   IF IS EX M WB        

SUB.D 
F8,F4,F0    IF IS S E1 E2 E3 S WB    

ADD.D 
F10,F6,F8     IF IS S S S S E1 E2 E3 WB 

S.D 
F10,-8(R1)      IF IS EX S S S S S M 

S.D 
F8,16(R1)       IF IS EX S M    

DADDUI 
R1,R1,32        IF IS E1 E2 WB   

SLTI 
R2,R1,640         IF IS S EX WB  

BNE 
R2,R0,Loop          IF IS S EX  
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