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16.482 / 16.561: Computer Architecture and Design 
Fall 2014 

 
Final Exam Solution 

 
1. (18 points) Multiple issue and multithreading 
This problem deals with the 3 threads below (which are also shown on your extra handout): 
 
Thread 1: 
ADD.D F0, F2, F4 
L.D F6, 0(R1) 
SUB.D F8, F0, F8 
ADD.D F10, F0, F10 
MUL.D F4, F8, F6 
DADDUI R1, R1, #16 
BNE  R1, R2, loop 

Thread 2: 
MUL.D F2, F6, F6 
S.D F2, 8(R1) 
SUB.D F6, F6, F0 
DADDUI R1, R1, #-1 
BNEZ R1, labelA 
MUL.D F0, F4, F2 
ADD.D F0, F6, F0 
J  labelB  

Thread 3: 
L.D F0, 0(R1) 
ADD.D F4, F6, F8 
ADD.D F10, F0, F4 
L.D F2, 8(R1) 
S.D F10, 16(R1) 
L.D F4, 24(R1) 
SUB.D F6, F4, F2 
JR  R31 
 

In both parts of the problem, the processor executes instructions in order, and you should 
assume all branches are not taken. Each instruction has the latency given below:  

• L.D/S.D: 3 cycles (1 EX, 2 MEM) 
• MUL.D: 4 cycles 
• ADD.D/SUB.D: 2 cycles 
• All other operations: 1 cycle 

a. (6 points) Will these threads run faster on a processor that uses fine-grained or coarse-
grained multithreading? Assume the coarse-grained processor would switch threads on stalls 
greater than 3 cycles (i.e., 4 or more cycles). Explain your answer without calculating the 
total time required for each case. (Hint: look at the number and length of stalls in each 
thread.) 

 
Solution: We can see from the instruction latencies that no instruction should have to stall for 
more than 3 cycles, since the longest-latency instruction is 4 cycles. We can go through the 
threads and look at the dependences in detail, but all three of these threads will have some 
“short” stalls that can be hidden by regularly switching threads. If run with coarse-grained 
multithreading, the processor would have to wait for every stall cycle. Therefore, these threads 
would run faster on a processor using fine-grained multithreading. 
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1 (continued) 
b. (12 points) Using the same 3 threads from part (a), determine how long they take to execute 

using simultaneous multithreading on a processor with the following characteristics: 

• Five functional units: 2 ALUs, 2 memory ports (load/store), 1 branch 
o Note: The ALUs can handle MUL.D and DADDUI operations 

• Thread 1 is the preferred thread, followed by Thread 2 and Thread 3. 
Your solution should use the table below, which contains columns to show each cycle and the 
functional units being used during that cycle. Clearly indicate which thread contains each 
instruction when completing the table, but you do not have to write the full instruction—
writing the opcode (i.e. L.D, ADD.D) is sufficient. 
 
Remember, your extra handout contains a copy of the threads and latencies. 

 

Cycle ALU1 ALU2 Mem1 Mem2 Branch 
1 T1: ADD.D T2: MUL.D T1: L.D T3: L.D  

2 T3: ADD.D     

3 T1: SUB.D T1: ADD.D    

4 T3: ADD.D  T3: L.D   

5 T1: MUL.D T1: DADDUI T2: S.D   

6 T2: SUB.D T2: DADDUI T3: S.D T3: L.D T1: BNE 

7 T2: MUL.D    T2: BNEZ 

8      

9 T3: SUB.D    T3: JR 

10      

11 T2: ADD.D    T2: J 
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2. (23 points) Cache basics (4 points) Identify and explain the two types of locality, giving an 
example of each. 

 
Solution: 
Spatial locality: if you access a memory location, you are more likely to access a location near it 
than some random location. Example: array accesses typically proceed from one element to the 
next, not randomly throughout the array. 
 
Temporal locality: if you access a memory location, you are more likely to access that location 
again than some random location. Example: index variable for a loop will be accessed in every 
loop iteration. 
 
 
a. (3 points) Explain how LRU replacement works and why it is effective. 
 
Solution: LRU (least recently used) replacement is a policy used in set-associative caches, in 
which the block that is evicted from a full set on a cache miss is the one that was accessed least 
recently. This policy is based on temporal locality—since the block that was most recently 
accessed is most likely to be accessed again, the one that was least recently accessed is least 
likely to be accessed again, making it the best candidate for eviction. 
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2 (continued) 
b. (16 points) You are given a system which has a 16-byte, write-back cache with 4-byte blocks. 

The cache is direct-mapped. The system uses 8-bit addresses, and the cache is initially 
empty. 

  
Assume the initial memory state shown below for the first 32 bytes:  
 

Address   Address  Address   Address  
0 27  8 19 16 22  24 13 
1 3  9 78 17 5  25 24 
2 20  10 9 18 15  26 21 
3 11  11 12 19 13  27 7 
4 5  12 1 20 49  28 18 
5 12  13 0 21 77  29 8 
6 14  14 63 22 15  30 55 
7 2  15 98 23 44  31 99 

 
For each access in the sequence listed below, fill in the cache state, indicate what register (if 
any) changes, and indicate if any memory blocks are written back and if so, what addresses and 
values are written. The cache state should carry over from one access to the next.  
 

Access Modified  
register 

Cache state Modified  
mem. block V D Tag Data 

lb $t0,8($zero)  $t0 = 19 

        
       

1 0 0000 19 78 9 12 
       

sb $t0,9($zero)   

        
       

1 1 0000 19 19 9 12 
       

lb $t1,15($zero)  $t1 = 98 

        
       

1 1 0000 19 19 9 12 
1 0 0000 1 0 63 98 

sb $t1,24($zero)   

       

mem[8-11] = 
[19 19 9 12] 

       
1 1 0001 98 24 21 7 
1 0 0000 1 0 63 98 
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3. (11 points) Virtual memory 
a. (3 points) Explain the purpose of a translation lookaside buffer (TLB). 
 
Solution: The TLB functions as a cache for page table entries. On a cache miss, the TLB is 
checked to see if a valid translation for the given virtual page has been recently performed. If so, 
the time required to perform address translation is much faster than it would be if a full page 
table access was required. 
 
 
b. (8 points) Fill in the table at the bottom of the page to show the final state of the given page 

table after the following sequence of accesses. Assume main memory has 8 frames, numbered 
0-7, and frame 5 is the only frame that is free before this sequence executes. 

 
ACCESS SEQUENCE 

• Read page 3 à Page fault; frame 5 allocated to page 3; Valid = Ref = 1; Dirty = 0 
• Write page 5 à Dirty = 1; all other bits unchanged 
• Write page 1 à Page fault; page 2 evicted (only valid page with Ref = 0); 

   Frame 4 allocated to page 1; Valid = Ref = Dirty = 1 
• Read page 0 à No bits change 

 
INITIAL PAGE TABLE STATE: 

Virtual 
page #  Valid bit  Reference 

bit  Dirty bit  Frame #  
0 1 1 1 3 
1 0 0 0 -- 
2 1 0 1 4 
3 0 0 0 -- 
4 1 1 0 0 
5 1 1 0 1 

 
FINAL PAGE TABLE STATE: 

Virtual 
page #  Valid bit  Reference 

bit  Dirty bit  Frame #  
0  1 1 1 3 
1  1 1 1 4 
2  0 0 0 -- 
3  1 1 0 5 
4 1 1 0 0 
5 1 1 1 1 
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4. (19 points) Cache optimizations 
a. (9 points) Briefly explain three of the following four cache optimizations: 
 

i. Trace caches  
 

Solution: A cache in which dynamic instruction traces are stored. Dynamic instruction traces are 
sequences of instructions in the order they are actually executed, not necessarily how they are 
stored in memory—for example, jump instructions and their targets are stored consecutively in 
dynamic traces. 
 

 
ii. Way prediction 

 
Solution: An optimization for set-associative caches in which a predictor is used to identify the 
line within a set that is most likely to have the desired data. If the prediction is accurate, the 
access time is comparable to that of a direct mapped cache, while the cache retains the lower 
miss rate of a set-associative cache. 

 
 

iii. Early restart/critical word first 
 
Solution: Optimizations to reduce the time required to fill a cache line on a miss. Early restart 
allows the cache to supply data to the processor as soon as the desired word is loaded, rather than 
waiting for the entire block to fill. Critical word first ensures that the desired word is loaded first, 
rather than always starting with the lowest addressed word in the block. 
 
 

iv. Hardware prefetching 
 
Solution: An optimization intended to reduce miss rate by anticipating future misses. Hardware 
prefetchers fetch two cache blocks on a miss—the block that was accessed and a block that is 
determined to be most likely accessed next. The simplest and often most effective form of 
hardware prefetching is next sequential prefetching, in which the next consecutive block is 
fetched on a miss. 
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4 (continued) 
b. (10 points) Assume we have a system containing 32 blocks of memory, numbered 0-31. The 

processor’s L1 data cache in this system contains four banks in which the blocks are 
sequentially interleaved. This system runs a program in which it must access the following 
ten blocks of data, but may do so in any order: 

1, 2, 10, 12, 15, 16, 24, 27, 28, 30 

Assume all ten accesses are misses, each of which takes 20 cycles to handle, and also assume 
that only one new access can be started each cycle.  

Determine the minimum number of cycles required to access all ten blocks, as well as a sequence 
of accesses that will take that amount of time. (Note: while there is only one correct value for the 
minimum number of cycles, there are multiple ways to access all ten blocks in that amount of 
time.)  For full credit, show all work. 
 
Solution: Remember, accesses to different banks can be overlapped and will start in consecutive 
cycles (for example, if an access to one bank starts in cycle i, the next access can start in cycle 
i+1). Since we are using sequential interleaving, the blocks are mapped to banks as shown in the 
table below—note that the number of cache lines do not matter. Blocks that are accessed in the 
given sequence are marked in red, and the number of accesses per bank is also given: 
 

Bank # Blocks mapped to this bank Accesses per bank 
0 0, 4, 8, 12, 16, 20, 24, 28 4 
1 1, 5, 9, 13, 17, 21, 25, 29 1 
2 2, 6, 10, 14, 18, 22, 26, 30 3 
3 3, 7, 11, 15, 19, 23, 27, 31 2 

To minimize the total access time for this sequence, consider the following: 
• Bank 0 has the most accesses, so accesses to that bank should start as early as possible. 

Those four accesses alone will take a total of 80 cycles. 
• You want to maximize the number of simultaneous accesses at all times to ensure that no 

other accesses are ongoing when bank 0’s accesses finish. 
 
One possible sequence that completes in 80 cycles is below. Any sequence starting with an 
access to bank 0 that does not delay accesses to other banks will take the same amount of time. 
 

Block # Bank Start cycle End cycle 
12 0 1 20 
2 2 2 21 

15 3 3 22 
1 1 4 23 

16 0 21 40 
10 2 22 41 
27 3 23 42 
24 0 41 60 
30 2 42 61 
28 0 61 80 
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5. (14 points) RAID 
Both parts of this problem involve a six-disk RAID array containing a total of 18 sectors; the 
exact sector configuration depends on the RAID level used. In all cases, fifteen of the eighteen 
sectors (S0-S14) hold data, while the remaining three sectors (P0-P2) hold parity information. 
 
a. (6 points) Determine how many of the six disks would be used in each of the following 

operations in this array, and briefly explain why:  
 

i. Large read  
 
Solution: A large read is a read that uses all disks in the array—the disks that do not hold the 
desired data are read to check that the parity disk is correct. So, all six disks would be used in 
this array. 
 
 

ii. Large write 
 
Solution: Similar to a large read, a large write would use all six disks in this array. The data 
disks that are not being written are used to compute the new value for the appropriate sector on 
the parity disk. 
 
 

iii. Small read 
 
Solution: A small read requires only one disk, regardless of the array size. Small reads use the 
per-disk error correction codes to check for errors on a read, rather than reading all other disks. 
 
 

iv. Small write 
 
Solution: A small write requires only two disks, regardless of the array size. In a small write, 
one data disk and the parity disk are written. Small writes use the fact that the difference between 
the new and old parity sector will be the same as the difference between the new and old data 
sector, so no additional information is required from other disks. 
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5 (continued) 
b. (8 points) Given the six-disk array described on the previous page (sectors S0-S14 hold data; 

P0-P2 hold parity information), also assume the following for this part of the problem:  

• The array is configured with RAID 5. 
• Large reads/writes take 200 ms, small reads take 50 ms, and small writes take 100 ms. 
• Requests are queued in such a manner that up to three consecutive operations may 

proceed simultaneously if they do not share any disk within the array. Multiple accesses 
in the same stripe are allowed. 

• If two disks, Dx and Dy, are in use, and the access to Dx finishes before the access to Dy, a 
new operation may start immediately assuming it does not involve Dy. 

Determine the time required for this array to complete the following sequence of accesses. For 
full credit, show all work, including the organization of the array: 

1. read S6 
2. write S12 
3. read S8 
4. write S2 

5. write S5 
6. write S9 
7. write S11 
8. read S14 

 
Solution: In RAID 5, both small reads and writes are allowed; we can therefore overlap any 
three consecutive operations that do not share the same disk. Remember RAID 5 also involves 
interleaved parity to make small writes possible, so the organization changes as follows: 

Disk 1  Disk 2  Disk 3  Disk 4  Disk 5  Disk 6 
S0  S1  S2  S3  S4  P0 

           
S5  S6  S7  S8  P1  S9 

           
S10  S11  S12  P2  S13  S14 

Note also that the problem states we can start a new transaction any time an existing transaction 
ends, provided the new transaction does not use the same disk as a currently executing 
transaction. Remember that the small writes enabled in RAID 5 require two disks—the data and 
parity disks. The solution is best described by tracking start and end times for each operation: 

 

Operation Start 
time 

End 
time Notes 

read S6 1 50 Different disks—overlap allowed. 
write S12 1 100 
read S8 101 150 Read to S8 cannot overlap with write to S12, as S8 

is on same disk as P1. However, all three of these 
operations use different disks and can overlap.  

write S2 101 200 
write S5 101 200 
write S9 201 300 These operations use disks 5/6 (write S9) and 2/4 

(write S11) and can therefore overlap. write S11 201 300 
read S14 301 350 Read to S14 cannot start until write to S9 is done 

 
This sequence takes 350 ms = 0.35 s. 
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6. (15 points) Coherence protocols 
a. (3 points) In a snooping coherence protocol, what is a relevant transaction? 
 
Solution: Relevant transactions are identified by the cache controller for a processor in a 
multiprocessor system, which monitors the interconnect between processors for read or write 
misses from other processors. If one of those misses accesses data that is stored in that 
processor’s cache, then it is a relevant transaction. 
 
 
b. (4 points) Explain the differences between the Fetch and Fetch/Invalidate messages used in a 

directory coherence protocol and describe a situation in which each message would be used. 
 
Solution: Both of these messages are used when a block is in the exclusive state and a processor 
that does not hold the lone copy of the block requests access to that data. 
 
A “Fetch” message is used to initiate a write back from a remote node when another node 
requests a read only copy of the block. The data will be written back to memory, and two shared 
copies of the block will exist once the transaction is complete. 
 
A “Fetch/Invalidate” message initiates a write back from a remote node when another node 
requests an exclusive, writeable copy of the block. The data will be written back to memory, and 
the remote node will invalidate its copy, as the node requesting the data intends to change it. The 
block therefore remains in the exclusive state—it is just stored in a different node. 
 
 
c. (3 points) Explain the difference between true and false sharing misses. 
 
Solution: A true sharing miss occurs when multiple processors share the same piece of data. 
When one of those processors writes the datum, the other processors’ copies will be invalidated 
and their next accesses to that datum will be cache misses. False sharing misses are similar, but 
these occur when the processors share separate pieces of data that happen to reside in the same 
cache block. 
 
For example, in a block with 4 words, numbered 0 to 3, assume two processors use the block. If 
P0 and P1 both access word 0 and P0 writes that word, P1’s next access will be a miss—a true 
sharing miss, because both P0 and P1 use word 0 from the block.  
 
If, however, P0 uses word 0 and P1 uses word 1, a write from P0 to word 0 will cause P1 to miss 
on its next access to word 1. That miss is a false sharing miss—the processors share the same 
block, but share different data within the block. 
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6 (continued) 
d. (5 points) Say we have a dual-processor system with two nodes, P0 and P1, which share a 

block at address A. The system uses a write-invalidate, directory coherence protocol. 
Initially, the directory entry for the block reads: 

 
 P0 P1 Dirty 
A 1 0 1 

 
If P1 now attempts to read block A, what messages are sent between the nodes and directory 
to ensure P1 gets the most up-to-date block copy and the directory holds the appropriate 
state? You may want to draw a diagram to support your answer. 

 
Solution: First, note that the state shown above means that the block is in the modified state—P0 
has the only copy, and that copy has yet to be written back to memory. This information means 
that any access from P1 involving block A must access P0 to get the most up-to-date copy of the 
block. 
 
The messages involved in this transaction are therefore: 
 

• Write Miss(P1, A): P1 indicates to the directory that it wishes to write this block. 

• Fetch/Invalidate(A): The directory sends a fetch & invalidate request to P0. This message 
indicates that P0 should provide the most up-to-date copy of the block and then invalidate 
its own copy, since P1 will now be modifying the block. 

• Data Write Back(A, <data>): P0 responds to the previous message with the most up-to-
date values for block A, so that those values may be stored in memory and sent to the 
cache requesting the data. 

• Data Value Reply(<data>): The directory can now send the up-to-date values for the 
block to P1; once this reply is received, P1 will proceed with its write. 

 

 


