
Solution to Tomasulo’s + Speculation Example
This example shows the operation of the reorder buffer (ROB) in a dynamically
scheduled processor that allows speculation, in addition to the structures we previously
discussed—reservation stations and register result status table. This solution shows the
state of those areas as well as the pipeline at every point.

Recall that the major differences with speculation are: (1) instructions are issued both to
reservation stations and the ROB, which ensures in-order commit, (2) renamed registers
are renamed to ROB entries, not reservation stations, and (3) only the ROB is allowed to
write the register file, when an instruction commits; at instruction completion, the value
is broadcast to dependent reservation stations and to the ROB, not the register file.

In this example, we show two loop iterations (the code is listed in the pipeline diagram),
assuming 2 cycle latencies for adds and loads and 6 cycles for multiplication. The
hardware we use is shown below:

Reorder buffer

 Op Dest Value Ready
1
2
3
4
5
6
7
8
9
10

Reservation stations:
Name Busy? Op Vj Vk Qj Qk A
Load1 N
Load2 N
INT1 N
INT2 N
Mult1 N
Mult2 N

Register result status table

F0 F2 F4 R1 R2

Pipeline diagram
Cycle 1 2 3 4 5
L.D F0,0(R1)
MUL.D F4,F0,F2
S.D F4,0(R1)
DADDIU R1,R1,#-8
BNE R1,R2,Loop
L.D F0,0(R1)
MUL.D F4,F0,F2
S.D F4,0(R1)
DADDIU R1,R1,#-8
BNE R1,R2,Loop

Cycles 1-2: The first instruction to issue is the L.D instruction, in cycle 2. This instruction fills reservation
station Load1 as well as ROB entry 1. The destination register (F0) is renamed to ROB1. We also fetch the
MUL.D in this cycle.

Reorder buffer

 Op Dest Value Ready
1 L.D F0 N
2
3
4
5
6
7
8
9
10

Reservation stations:
Name Busy? Op Vj Vk Qj Qk A
Load1 Y L.D [R1] 0
Load2 N
Int1 N
Int2 N
Mult1 N
Mult2 N

Register result status table

F0 F2 F4 R1 R2
ROB1

Pipeline diagram
Cycle 1 2 3 4 5
L.D F0,0(R1) IF IS
MUL.D F4,F0,F2 IF
S.D F4,0(R1)
DADDIU R1,R1,#-8
BNE R1,R2,Loop
L.D F0,0(R1)
MUL.D F4,F0,F2
S.D F4,0(R1)
DADDIU R1,R1,#-8
BNE R1,R2,Loop

Cycle 3: The L.D calculates its address in this cycle. We issue the MUL.D to Mult1 and ROB entry 2; since this
instruction depends on the load, it will stall until the load completes. The S.D is fetched.

Reorder buffer

 Op Dest Value Ready
1 L.D F0 N
2 MUL.D F4 N
3
4
5
6
7
8
9
10

Reservation stations:
Name Busy? Op Vj Vk Qj Qk A
Load1 Y L.D 0+[R1]
Load2 N
INT1 N
INT2 N
Mult1 Y MUL.D [F2] ROB1
Mult2 N

Register result status table

F0 F2 F4 R1 R2
ROB1 ROB2

Pipeline diagram
Cycle 1 2 3 4 5
L.D F0,0(R1) IF IS EX
MUL.D F4,F0,F2 IF IS
S.D F4,0(R1) IF
DADDIU R1,R1,#-8
BNE R1,R2,Loop
L.D F0,0(R1)
MUL.D F4,F0,F2
S.D F4,0(R1)
DADDIU R1,R1,#-8
BNE R1,R2,Loop

Cycle 4: The L.D accesses memory. The S.D is issued; this instruction needs no reservation station, but it will
occupy entry 3 in the ROB. Note that the destination for this instruction is an address, not a register, and that
address will not be calculated until the next cycle. We do have to indicate that the value will come from ROB2.
The MUL.D stalls, waiting for the L.D to complete, and the DADDIU is fetched.

Reorder buffer

 Op Dest Value Ready
1 L.D F0 N
2 MUL.D F4 N
3 S.D ROB2 N
4
5
6
7
8
9
10

Reservation stations:
Name Busy? Op Vj Vk Qj Qk A
Load1 Y L.D 0+[R1]
Load2 N
INT1 N
INT2 N
Mult1 Y MUL.D [F2] ROB1
Mult2 N

Register result status table

F0 F2 F4 R1 R2
ROB1 ROB2

Pipeline diagram
Cycle 1 2 3 4 5
L.D F0,0(R1) IF IS EX M
MUL.D F4,F0,F2 IF IS S
S.D F4,0(R1) IF IS
DADDIU R1,R1,#-8 IF
BNE R1,R2,Loop
L.D F0,0(R1)
MUL.D F4,F0,F2
S.D F4,0(R1)
DADDIU R1,R1,#-8
BNE R1,R2,Loop

Cycle 5: The L.D completes in this cycle, which allows the MUL.D to start execution. Note that the completion
of the load clears the reservation station, but does not clear the appropriate entry in the register result status
table, as the result of the load remains in the ROB until the instruction commits. The ROB entry with the L.D,
however, is marked as ready to commit; as the oldest instruction in the ROB, it will commit in the next cycle.
The S.D can calculate its address in this cycle—although it is dependent on the MUL.D, that value isn’t
necessary until the actual store takes place, when the instruction commits. The DADDIU issues to INT1 and
ROB4. The BNE is fetched.

Reorder buffer

 Op Dest Value Ready
1 L.D F0 M[0+R1] Y
2 MUL.D F4 N
3 S.D 0+R1 ROB2 N
4 DADDIU R1 N
5
6
7
8
9
10

Reservation stations:
Name Busy? Op Vj Vk Qj Qk A
Load1 N
Load2 N
INT1 Y DADDIU [R1] -8
INT2 N
Mult1 Y MUL.D [F0] [F2]
Mult2 N

Register result status table

F0 F2 F4 R1 R2
ROB1 ROB2 ROB4

Pipeline diagram
Cycle 1 2 3 4 5
L.D F0,0(R1) IF IS EX M WB
MUL.D F4,F0,F2 IF IS S EX1
S.D F4,0(R1) IF IS EX
DADDIU R1,R1,#-8 IF IS
BNE R1,R2,Loop IF
L.D F0,0(R1)
MUL.D F4,F0,F2
S.D F4,0(R1)
DADDIU R1,R1,#-8
BNE R1,R2,Loop

Cycle 6: The first instruction commits in this cycle. Since the L.D is the oldest instruction in the ROB, and it’s
ready to commit, it writes its result to the register file and clears the corresponding ROB entry. The MUL.D
now becomes the head of the ROB; no other instructions will commit until this instruction finishes execution.

The BNE issues in this cycle; much like the store, this instruction does not require a reservation station, but it
does occupy an entry in the ROB. Committing a branch implies that all instructions following that branch are
non-speculative, so keeping these instructions in the ROB is extremely important.

We assume that the BNE can be accurately predicted, so we fetch the second L.D in this cycle.

The MUL.D continues executing. The S.D reaches its MEM stage, but performs no actual work, as it does not
have the necessary register value and will not actually access memory until commit. The DADDIU begins
execution in this cycle.

Reorder buffer

 Op Dest Value Ready
1 L.D F0 M[0+R1] Y
2 MUL.D F4 N
3 S.D 0+R1 ROB2 N
4 DADDIU R1 N
5 BNE -- N
6
7
8
9
10

Reservation stations:
Name Busy? Op Vj Vk Qj Qk A
Load1 N
Load2 N
INT1 Y DADDIU [R1] -8
INT2 N
Mult1 Y MUL.D [F0] [F2]
Mult2 N

Register result status table

F0 F2 F4 R1 R2
 ROB2 ROB4

Pipeline diagram
Cycle 1 2 3 4 5 6
L.D F0,0(R1) IF IS EX M WB C
MUL.D F4,F0,F2 IF IS S EX1 EX2
S.D F4,0(R1) IF IS EX S
DADDIU R1,R1,#-8 IF IS EX1
BNE R1,R2,Loop IF IS
L.D F0,0(R1) IF
MUL.D F4,F0,F2
S.D F4,0(R1)
DADDIU R1,R1,#-8
BNE R1,R2,Loop

Cycle 7: The MUL.D and DADDIU continue executing in this cycle; the DADDIU will complete execution in
this cycle and will be able to broadcast its result in the following cycle. All other issued instructions are
dependent on those two instructions—the S.D depends on the MUL.D; the BNE depends on the DADDIU—and
must therefore stall. We issue the second L.D in this cycle; this instruction also depends on the DADDIU, so we
mark the Qj field for the load with the number of the ROB entry (ROB4) that will eventually contain the correct
value. We also fetch the second MUL.D.

Reorder buffer

 Op Dest Value Ready
1
2 MUL.D F4 N
3 S.D 0+R1 ROB2 N
4 DADDIU R1 N
5 BNE -- N
6 L.D F0 N
7
8
9
10

Reservation stations:
Name Busy? Op Vj Vk Qj Qk A
Load1 Y L.D ROB4 0
Load2 N
INT1 Y DADDIU [R1] -8
INT2 N
Mult1 Y MUL.D [F0] [F2]
Mult2 N

Register result status table

F0 F2 F4 R1 R2
ROB6 ROB2 ROB4

Pipeline diagram
Cycle 1 2 3 4 5 6 7
L.D F0,0(R1) IF IS EX M WB C
MUL.D F4,F0,F2 IF IS S EX1 EX2 EX3
S.D F4,0(R1) IF IS EX S S
DADDIU R1,R1,#-8 IF IS EX1 EX2
BNE R1,R2,Loop IF IS S
L.D F0,0(R1) IF IS
MUL.D F4,F0,F2 IF
S.D F4,0(R1)
DADDIU R1,R1,#-8
BNE R1,R2,Loop

Cycle 8: The DADDIU completes in this cycle, broadcasting its result on the CDB and clearing its reservation
station. This instruction is now ready to commit, although it will not do so for several cycles. The result of this
instruction is therefore stored in the ROB until the instruction commits, and any dependent instructions looking
to read this value will get it from the ROB. The BNE and L.D instructions both depend on the DADDIU; they
can now begin execution. The BNE calculates its correct outcome, while the L.D calculates its address.

We issue the second MUL.D in this cycle. Note that when we do so, we rename F4 to ROB7, overwriting the
previous entry for that register in the register result status table. This means that when the first MUL.D
commits, it will not actually update the register file because a newer instruction that writes the same register is
currently in flight.

Reorder buffer

 Op Dest Value Ready
1
2 MUL.D F4 N
3 S.D 0+R1 ROB2 N
4 DADDIU R1 [R1]+(-8) Y
5 BNE -- N
6 L.D F0 N
7 MUL.D F4 N
8
9
10

Reservation stations:
Name Busy? Op Vj Vk Qj Qk A
Load1 Y L.D 0+[R1]

+(-8)
Load2 N
INT1 N
INT2 N
Mult1 Y MUL.D [F0] [F2]
Mult2 Y MUL.D [F2] ROB6

Register result status table

F0 F2 F4 R1 R2
ROB6 ROB7 ROB4

Pipeline diagram
Cycle 1 2 3 4 5 6 7 8
L.D F0,0(R1) IF IS EX M WB C
MUL.D F4,F0,F2 IF IS S EX1 EX2 EX3 EX4
S.D F4,0(R1) IF IS EX S S S
DADDIU R1,R1,#-8 IF IS EX1 EX2 WB
BNE R1,R2,Loop IF IS S EX
L.D F0,0(R1) IF IS EX
MUL.D F4,F0,F2 IF IS
S.D F4,0(R1) IF
DADDIU R1,R1,#-8
BNE R1,R2,Loop

Cycle 9: We issue the second store in this cycle, which once again takes up only a ROB entry and not a
reservation station. This instruction must wait for the second multiply to complete.

The BNE, having determined its outcome in the previous cycle, is now marked as being ready to commit. Both
this instruction and the DADDIU are now waiting to commit; they are not technically stalled, as they are not
consuming execution resources, so we mark their status as “—“ in the pipeline diagram.

The first multiply continues execution. The second load accesses memory in this cycle and will write back its
result in the following cycle. The first store and second multiply remain stalled.

Reorder buffer

 Op Dest Value Ready
1
2 MUL.D F4 N
3 S.D 0+R1 ROB2 N
4 DADDIU R1 [R1]+(-8) Y
5 BNE -- Y
6 L.D F0 N
7 MUL.D F4 N
8 S.D ROB7 N
9
10

Reservation stations:
Name Busy? Op Vj Vk Qj Qk A
Load1 Y L.D 0+[R1]

+(-8)
Load2 N
INT1 N
INT2 N
Mult1 Y MUL.D [F0] [F2]
Mult2 Y MUL.D [F2] ROB6

Register result status table

F0 F2 F4 R1 R2
ROB6 ROB7 ROB4

Pipeline diagram
Cycle 1 2 3 4 5 6 7 8 9
L.D F0,0(R1) IF IS EX M WB C
MUL.D F4,F0,F2 IF IS S EX1 EX2 EX3 EX4 EX5
S.D F4,0(R1) IF IS EX S S S S
DADDIU R1,R1,#-8 IF IS EX1 EX2 WB --
BNE R1,R2,Loop IF IS S EX --
L.D F0,0(R1) IF IS EX M
MUL.D F4,F0,F2 IF IS S
S.D F4,0(R1) IF IS
DADDIU R1,R1,#-8 IF
BNE R1,R2,Loop

Cycle 10: The second L.D completes in this cycle. This completion allows the second multiply to begin
execution; it also leads to the clearing of the reservation station and the marking of this instruction as ready to
commit. The value loaded from memory is stored in ROB entry 6, where the load resides.

We issue the second DADDIU; once again, we rename a register (R1) with a value that has not been committed
by an earlier instruction (in this case, the first DADDIU). That first DADDIU will therefore not write the
register file when it commits. Note that the second DADDIU reads the value of R1 from the ROB, not the
register file, which is why the Vj field of that instruction has the value “[R1]+(-8),” the same value to be
committed by the first add.

Reorder buffer

 Op Dest Value Ready
1
2 MUL.D F4 N
3 S.D 0+R1 ROB2 N
4 DADDIU R1 [R1]+(-8) Y
5 BNE -- Y
6 L.D F0 M[R1-8] Y
7 MUL.D F4 N
8 S.D 0+R1 ROB7 N
9 DADDIU R1 N
10

Reservation stations:
Name Busy? Op Vj Vk Qj Qk A
Load1 N

Load2 N

INT1 Y DADDIU [R1]+(-8) -8

INT2 N

Mult1 Y MUL.D [F0] [F2]

Mult2 Y MUL.D [F0] [F2]

Register result status table

F0 F2 F4 R1 R2
ROB6 ROB7 ROB9

Pipeline diagram
Cycle 1 2 3 4 5 6 7 8 9 10
L.D F0,0(R1) IF IS EX M WB C
MUL.D F4,F0,F2 IF IS S EX1 EX2 EX3 EX4 EX5 EX6
S.D F4,0(R1) IF IS EX S S S S S
DADDIU R1,R1,#-8 IF IS EX1 EX2 WB -- --
BNE R1,R2,Loop IF IS S EX -- --
L.D F0,0(R1) IF IS EX M WB
MUL.D F4,F0,F2 IF IS S EX1
S.D F4,0(R1) IF IS EX
DADDIU R1,R1,#-8 IF IS
BNE R1,R2,Loop IF

Cycle 11: The first MUL.D finishes execution in this cycle and broadcasts its results on the CDB. This
broadcast leads to both the multiply and the first S.D being marked as ready to commit, since the store is
waiting for the result of the multiply. We also clear the corresponding reservation station.

We issue the final instruction in this sequence, the second BNE, in this cycle. The branch requires only a ROB
entry.

Reorder buffer

 Op Dest Value Ready
1
2 MUL.D F4 [F0]*[F2] Y
3 S.D 0+R1 [F0]*[F2] Y
4 DADDIU R1 [R1]+(-8) Y
5 BNE -- Y
6 L.D F0 M[R1-8] Y
7 MUL.D F4 N
8 S.D 0+R1 ROB7 N
9 DADDIU R1 N
10 BNE -- N

Reservation stations:
Name Busy? Op Vj Vk Qj Qk A
Load1 N

Load2 N

INT1 Y DADDIU [R1]+(-8) -8

INT2 N

Mult1 N

Mult2 Y MUL.D [F0] [F2]

Register result status table

F0 F2 F4 R1 R2
ROB6 ROB7 ROB9

Pipeline diagram
Cycle 1 2 3 4 5 6 7 8 9 10 11
L.D F0,0(R1) IF IS EX M WB C
MUL.D F4,F0,F2 IF IS S EX1 EX2 EX3 EX4 EX5 EX6 WB
S.D F4,0(R1) IF IS EX S S S S S --
DADDIU R1,R1,#-8 IF IS EX1 EX2 WB -- -- --
BNE R1,R2,Loop IF IS S EX -- -- --
L.D F0,0(R1) IF IS EX M WB --
MUL.D F4,F0,F2 IF IS S EX1 EX2
S.D F4,0(R1) IF IS EX S
DADDIU R1,R1,#-8 IF IS EX1
BNE R1,R2,Loop IF IS

Cycle 12: The first multiply commits in this cycle. Note, however, that the most up-to-date value of F4—the
destination register for this instruction—will come from ROB7, so this instruction does not update the register
file. Note that we now have a string of five instructions, starting with this MUL.D, ready to commit, so a new
instruction will commit in each of the next several cycles.

The second multiply and add instructions continue execution. The second store and branch instructions depend
on these two instructions, and therefore stall.

Reorder buffer

 Op Dest Value Ready
1
2 MUL.D F4 [F0]*[F2] Y
3 S.D 0+R1 [F0]*[F2] Y
4 DADDIU R1 [R1]+(-8) Y
5 BNE -- Y
6 L.D F0 M[R1-8] Y
7 MUL.D F4 N
8 S.D 0+R1 ROB7 N
9 DADDIU R1 N
10 BNE -- N

Reservation stations:
Name Busy? Op Vj Vk Qj Qk A
Load1 N

Load2 N

INT1 Y DADDIU [R1]+(-8) -8

INT2 N

Mult1 N

Mult2 Y MUL.D [F0] [F2]

Register result status table

F0 F2 F4 R1 R2
ROB6 ROB7 ROB9

Pipeline diagram
Cycle 1 2 3 4 5 6 7 8 9 10 11 12
L.D F0,0(R1) IF IS EX M WB C
MUL.D F4,F0,F2 IF IS S EX1 EX2 EX3 EX4 EX5 EX6 WB C
S.D F4,0(R1) IF IS EX S S S S S -- --
DADDIU R1,R1,#-8 IF IS EX1 EX2 WB -- -- -- --
BNE R1,R2,Loop IF IS S EX -- -- -- --
L.D F0,0(R1) IF IS EX M WB -- --
MUL.D F4,F0,F2 IF IS S EX1 EX2 EX3
S.D F4,0(R1) IF IS EX S S
DADDIU R1,R1,#-8 IF IS EX1 EX2
BNE R1,R2,Loop IF IS S

Cycle 13: The first store commits in this cycle and will now be allowed to write to memory.

The second DADDIU writes its result to the CDB in this cycle, which allows the second branch to determine its
correct outcome. The MUL.D continues executing, while the S.D stalls while waiting for the multiply.

Reorder buffer

 Op Dest Value Ready
1
2
3 S.D 0+R1 [F0]*[F2] Y
4 DADDIU R1 [R1]+(-8) Y
5 BNE -- Y
6 L.D F0 M[R1-8] Y
7 MUL.D F4 N
8 S.D 0+R1 ROB7 N
9 DADDIU R1 [R1]+(-16) Y
10 BNE -- N

Reservation stations:
Name Busy? Op Vj Vk Qj Qk
Load1 N

Load2 N

INT1 N

INT2 N

Mult1 N

Mult2 Y MUL.D [F0] [F2]

Register result status table

F0 F2 F4 R1 R2
ROB6 ROB7 ROB9

Pipeline diagram
Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13
L.D F0,0(R1) IF IS EX M WB C
MUL.D F4,F0,F2 IF IS S EX1 EX2 EX3 EX4 EX5 EX6 WB C
S.D F4,0(R1) IF IS EX S S S S S -- -- C
DADDIU R1,R1,#-8 IF IS EX1 EX2 WB -- -- -- -- --
BNE R1,R2,Loop IF IS S EX -- -- -- -- --
L.D F0,0(R1) IF IS EX M WB -- -- --
MUL.D F4,F0,F2 IF IS S EX1 EX2 EX3 EX4
S.D F4,0(R1) IF IS EX S S S
DADDIU R1,R1,#-8 IF IS EX1 EX2 WB
BNE R1,R2,Loop IF IS S EX

Cycle 14: The first DADDIU commits in this cycle, but is not allowed to update the register file, as the
instruction in ROB9 (the second DADDIU) will produce a more up-to-date version of R1.

The second branch is marked as ready to commit in this cycle. The second multiply continues execution.

Note that we have removed the first cycle from the pipeline diagram for space reasons; we will continue to do
so for all remaining cycles.

Reorder buffer

 Op Dest Value Ready
1
2
3
4 DADDIU R1 [R1]+(-8) Y
5 BNE -- Y
6 L.D F0 M[0+R1] Y
7 MUL.D F4 N
8 S.D 0+R1 ROB7 N
9 DADDIU R1 [R1]+(-16) Y
10 BNE -- Y

Reservation stations:
Name Busy? Op Vj Vk Qj Qk
Load1 N

Load2 N

INT1 N

INT2 N

Mult1 N

Mult2 Y MUL.D [F0] [F2]

Register result status table

F0 F2 F4 R1 R2
ROB6 ROB7 ROB9

Pipeline diagram
Cycle 2 3 4 5 6 7 8 9 10 11 12 13 14
L.D F0,0(R1) IS EX M WB C
MUL.D F4,F0,F2 IF IS S EX1 EX2 EX3 EX4 EX5 EX6 WB C
S.D F4,0(R1) IF IS EX S S S S S -- -- C
DADDIU R1,R1,#-8 IF IS EX1 EX2 WB -- -- -- -- -- C
BNE R1,R2,Loop IF IS S EX -- -- -- -- -- --
L.D F0,0(R1) IF IS EX M WB -- -- -- --
MUL.D F4,F0,F2 IF IS S EX1 EX2 EX3 EX4 EX5
S.D F4,0(R1) IF IS EX S S S S
DADDIU R1,R1,#-8 IF IS EX1 EX2 WB --
BNE R1,R2,Loop IF IS S EX --

Cycle 15: The first branch commits in this cycle. We assume this instruction was predicted correctly and allow
later instructions to commit. If the branch had been mispredicted, we would have identified that misprediction
in its EX stage, and all other instructions in the ROB, as well as the pipeline, would be flushed. Instruction fetch
would then restart at the correct instruction after the branch.

Reorder buffer

 Op Dest Value Ready
1
2
3
4
5 BNE -- Y
6 L.D F0 M[0+R1] Y
7 MUL.D F4 N
8 S.D 0+R1 ROB7 N
9 DADDIU R1 [R1]+(-16) Y
10 BNE -- Y

Reservation stations:
Name Busy? Op Vj Vk Qj Qk
Load1 N

Load2 N

INT1 N

INT2 N

Mult1 N

Mult2 Y MUL.D [F0] [F2]

Register result status table

F0 F2 F4 R1 R2
ROB6 ROB7 ROB9

Pipeline diagram
Cycle 3 4 5 6 7 8 9 10 11 12 13 14 15
L.D F0,0(R1) EX M WB C
MUL.D F4,F0,F2 IS S EX1 EX2 EX3 EX4 EX5 EX6 WB C
S.D F4,0(R1) IF IS EX S S S S S -- -- C
DADDIU R1,R1,#-8 IF IS EX1 EX2 WB -- -- -- -- -- C
BNE R1,R2,Loop IF IS S EX -- -- -- -- -- -- C
L.D F0,0(R1) IF IS EX M WB -- -- -- -- --
MUL.D F4,F0,F2 IF IS S EX1 EX2 EX3 EX4 EX5 EX6
S.D F4,0(R1) IF IS EX S S S S S
DADDIU R1,R1,#-8 IF IS EX1 EX2 WB -- --
BNE R1,R2,Loop IF IS S EX -- --

Cycle 16: The second load commits this cycle. As we can see from the register result status table (as shown in
the previous cycle), this instruction holds the most up-to-date value for F0 and will therefore be allowed to
update the register file.

The second multiply writes its result to the CDB this cycle, meaning that both the multiply and the store that
needs its result are now ready to commit.

Reorder buffer

 Op Dest Value Ready
1
2
3
4
5
6 L.D F0 M[R1-8] Y
7 MUL.D F4 [F0]*[F2] Y
8 S.D 0+R1 [F0]*[F2] Y
9 DADDIU R1 [R1]+(-16) Y
10 BNE -- Y

Reservation stations:
Name Busy? Op Vj Vk Qj Qk
Load1 N

Load2 N

INT1 N

INT2 N

Mult1 N

Mult2 N

Register result status table

F0 F2 F4 R1 R2
 ROB7 ROB9

Pipeline diagram
Cycle 4 5 6 7 8 9 10 11 12 13 14 15 16
L.D F0,0(R1) M WB C
MUL.D F4,F0,F2 S EX1 EX2 EX3 EX4 EX5 EX6 WB C
S.D F4,0(R1) IS EX S S S S S -- -- C
DADDIU R1,R1,#-8 IF IS EX1 EX2 WB -- -- -- -- -- C
BNE R1,R2,Loop IF IS S EX -- -- -- -- -- -- C
L.D F0,0(R1) IF IS EX M WB -- -- -- -- -- C
MUL.D F4,F0,F2 IF IS S EX1 EX2 EX3 EX4 EX5 EX6 WB
S.D F4,0(R1) IF IS EX S S S S S --
DADDIU R1,R1,#-8 IF IS EX1 EX2 WB -- -- --
BNE R1,R2,Loop IF IS S EX -- -- --

Cycles 17-20: All remaining instructions commit during these cycles, one per cycle. The appropriate register
result status table entries are cleared in cycle 17 (when the MUL.D commits) and cycle 19 (when the DADDIU
commits).

Reorder buffer

 Op Dest Value Ready
1
2
3
4
5
6
7 MUL.D F4 [F0]*[F2] Y
8 S.D 0+R1 [F0]*[F2] Y
9 DADDIU R1 [R1]+(-16) Y
10 BNE -- Y

Reservation stations:
Name Busy? Op Vj Vk Qj Qk
Load1 N

Load2 N

INT1 N

INT2 N

Mult1 N

Mult2 N

Register result status table

F0 F2 F4 R1 R2
 ROB7 ROB9

Pipeline diagram
Cycle 8 9 10 11 12 13 14 15 16 17 18 19 20
L.D F0,0(R1)
MUL.D F4,F0,F2 EX4 EX5 EX6 WB C
S.D F4,0(R1) S S S -- -- C
DADDIU R1,R1,#-8 WB -- -- -- -- -- C
BNE R1,R2,Loop EX -- -- -- -- -- -- C
L.D F0,0(R1) EX M WB -- -- -- -- -- C
MUL.D F4,F0,F2 IS S EX1 EX2 EX3 EX4 EX5 EX6 WB C
S.D F4,0(R1) IF IS EX S S S S S -- -- C
DADDIU R1,R1,#-8 IF IS EX1 EX2 WB -- -- -- -- -- C
BNE R1,R2,Loop IF IS S EX -- -- -- -- -- -- C

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
L.D F0,0(R1) IF IS EX M WB C
MUL.D
F4,F0,F2

 IF IS S EX1 EX2 EX3 EX4 EX5 EX6 WB C

S.D F4,0(R1) IF IS EX S S S S S -- -- C
DADDIU
R1,R1,#-8

 IF IS EX1 EX2 WB -- -- -- -- -- C

BNE
R1,R2,Loop

 IF IS S EX -- -- -- -- -- -- C

L.D F0,0(R1) IF IS EX M WB -- -- -- -- -- C
MUL.D
F4,F0,F2

 IF IS S EX1 EX2 EX3 EX4 EX5 EX6 WB C

S.D F4,0(R1) IF IS EX S S S S S -- -- C
DADDIU
R1,R1,#-8

 IF IS EX1 EX2 WB -- -- -- -- -- C

BNE
R1,R2,Loop

 IF IS S EX -- -- -- -- -- -- C

The full pipeline diagram for all 20 cycles. As we’ve discussed, instructions are allowed to execute and complete out of order, but they
must commit in order to allow easy recovery from branch mispredictions and maintain precise exceptions.

