16.482 / 16.561: Computer Architecture and Design

Fall 2013

Homework \#5

Due Monday, 11/18/13

Notes:

- While typed submissions are preferred, handwritten submissions are acceptable.
- Any handwritten solutions that are scanned and submitted electronically must be clearly legible and combined into a single file-simply sending a picture of each scanned page is not an acceptable form of submission.
- Note that this assignment is worth a total of $\mathbf{1 5 0}$ points, not 100.

1. Dynamic scheduling (30 points) Given the loop below:

	DADDI	R3, R0, \#4
outer:	DADDI	R2, R1, \#32
inner:	L.D	F0, 0(R1)
	MULT.D	F6, F0, F6
	S.D	F6, 8(R1)
	DADDI	R1, R1, \#16
	BNE	R2, R1, inner
	DADDI	R3, R3, \#-2
	BNEZ	R3, outer

Assume the following latencies:

- 1 cycle for DADDI, BNE, and BNEZ
- 3 cycles (1 EX, 2 MEM) for L.D and S.D
- 4 cycles for MULT.D

How long would this nested loop take without speculation? Remember, without speculation, you cannot fetch past a branch until the outcome of the branch is known.
2. Speculation (30 points) How many cycles will the sequence in Question 1 take if we do allow speculation and assume every branch prediction-including the predicted target from the BTB-is correct?
3. Speculation \& branch prediction (40 points) Now, assume the processor has a 2-bit BHT to predict branch outcomes. On a mispredicted branch, the correct instructions are fetched starting with the cycle after the misprediction is recognized (EX). Assume that all BHT entries are initially equal to 00 , and that the two branches in this example use separate BHT entries. Also, assume the BTB correctly predicts all targets for taken branches. How long will the loop in Question 1 now take?
4. Multithreading (50 points) Given the three threads shown below, determine how long they take to execute using (a) fine-grained multithreading, (b) coarse-grained multithreading, and (c) simultaneous multithreading.

For coarse-grained multithreading, switch threads on any stall longer than 1 cycle. (Note that you must determine the number of stall cycles based on dependences between instructions.) For simultaneous multithreading, treat thread 1 as the preferred thread, followed by thread 2 and thread 3.

Assume you are using a processor with the following characteristics:

- 6 functional units: 3 ALUs, 2 memory ports (load/store), 1 branch
- In-order execution
- The following instruction latencies:
o L.D/S.D: 4 cycles (1 EX, 3 MEM)
o ADD.D/SUB.D: 2 cycles
o All other operations: 1 cycle

Thread 1:	Thread 2:	Thread 3:
L.D F0, 0(R1)	DADDUI R1, R1, \#24	L.D F6, 0(R1)
L.D F2, 8(R1)	ADD.D F2, F0, F4	ADD.D F8, F8, F6
ADD.D F4, F0, F2	ADD.D F4, F6, F8	S.D F8, 8(R1)
SUB.D F6, F2, F0	ADD.D F6, F0, F6	DADDUI R1, R1, \#16
S.D F4, 16(R1)	S.D F2, -24(R1)	BNE R1, R2, loop
S.D F6, 24(R1)	S.D F4, -16(R1)	L.D F6, 0(R1)
DSUBUI R1, R1, \#32	S.D F6, -8(R1)	ADD.D F8, F8, F6
BNEZ R1, loop	BEQ R1, R7, end	S.D F8, 8(R1)
		DADDUI R1, R1, \#16

