
 1

16.482 / 16.561: Computer Architecture and Design
Fall 2013

Midterm Exam Solution

1. (14 points) Computer performance
We use two compilers to generate machine code for the same program, on the same processor,
which has a 10 ns cycle time. The instruction breakdown is shown below:

Compiler ALU instructions Loads Stores Branches
1 30 45 15 10
2 80 45 20 55

Assume that ALU instructions take 1 cycle, loads and stores each take 4 cycles, and branches
take 2 cycles. For all parts of this problem, show all work for full credit.

a. (8 points) Calculate the average CPI for each code sequence.

Solution: Note that sequence 1 has 100 instructions, while sequence 2 has 200 instructions. The
instruction frequency for each type can therefore be calculated as follows:

Seq ALU instructions Loads Stores Branches
1 30 / 100 = 0.3 45 / 100 = 0.45 15 / 100 = 0.15 10 / 100 = 0.1
2 80 / 200 = 0.4 45 / 200 = 0.225 20 / 200 = 0.1 55 / 200 = 0.275

Therefore:
 CPI1 = (0.3 * 1) + (0.45 * 4) + (0.15 * 4) + (0.1 * 2)
 = 0.3 + 1.8 + 0.6 + 0.2 = 2.9

 CPI2 = (0.4 * 1) + (0.225 * 4) + (0.1 * 4) + (0.275 * 2)
 = 0.4 + 0.9 + 0.4 + 0.55 = 2.25

Note: You could have just calculated the number of cycles directly (290 for sequence 1; 450 for
sequence 2) and divided by the total instruction count to get average CPI.

b. (6 points) Which sequence runs faster? By how much?

Solution: If you calculated the total cycle count in part (a), this part is easy; otherwise, you need
to look at the ratio of execution times:

 ET1 = (100 instructions) * (2.9 cycles/instruction) * (cycle time) = 290 * CT
 ET2 = (200 instructions) * (2.25 cycles/instruction) * (cycle time) = 450 * CT

Because both sequences run on the same machine, the cycle time is the same. We can therefore
see that sequence 1 is faster, by a factor of 450 / 290 ≈ 1.55

 2

2. (16 points) UEvaluating instructions
For each part of the following question, assume the following initial state. Note that your
answers to each part should use the values below—your answer to part (a), for example, should
not affect your answer to part (b).

• $s0 = 0x00100000, $t0 = 0x00000006, $t1 = 0x00000007
• Contents of memory (all values are in hexadecimal)

Address
0x00100000 0C 15 27 30
0x00100004 FF 27 DD CC

For each instruction sequence below, list Uall U changed registers and/or memory locations and
their new values. When listing memory values, list the entire word—for example, if a byte is
written to 0x00100000, show the values at addresses 0x00100000-0x00100003.

a. (8 points)

lh $t2, 6($s0)
add $t3, $t0, $t1
addi $t4, $t1, -6
sub $t5, $t3, $t4

Solution:
 $t2 = sign-extended halfword at address 0x00100006 =
 0xFFFFDDCC
 $t3 = $t0 + $t1 = 0x00000006 + 0x00000007 = 0x0000000D
 $t4 = $t1 + (-6) = 0x00000007 + (-6) = 0x00000001
 $t5 = $t3 - $t4 = 0x0000000D – 0x00000001 = 0x0000000C

b. (8 points)

ori $s1, $t0, 0xFFF0
sll $s2, $s1, 16
sra $s3, $s2, 16
sb $s3, 2($s0) (typo on exam—had $t8, not $s3)

$s1 = $t0 OR 0xFFF0 = 0x00000006 OR 0x0000FFF0

 = 0x0000FFF6
 $s2 = $s1 << 16 = 0x0000FFF6 << 16 = 0xFFF60000
 $s3 = $s2 >> 16 = 0xFFF60000 >> 16 = 0xFFFFFFF6
 mem[2 + $s0] = mem[0x00100002] = lowest byte of $s3 = 0xF6

 3

3. (18 points) Binary multiplication
You are given A = -7 and B = 3. Assume each operand uses four bits. Show how the binary
multiplication of A * B would proceed using Booth’s Algorithm.

 1 1 0 0 1 Multiplicand (-7)
 0 0 1 1 1 -Multiplicand (7)

 0 0 0 0 0 0 0 1 1 0 Initial product/multiplier
+ 0 0 1 1 1 Step 1: Last 2 bits = 10 add –Mcand,
 0 0 1 1 1 0 0 1 1 0 then shift right

 0 0 0 1 1 1 0 0 1 1 Step 2: Last 2 bits = 11 shift right

 0 0 0 0 1 1 1 0 0 1 Step 3: Last 2 bits = 01 add Mcand,
+ 1 1 0 0 1 then shift right
 1 1 0 1 0 1 1 0 0 1

 1 1 1 0 1 0 1 1 0 0 Step 4: Last 2 bits = 00 shift right

 1 1 1 1 0 1 0 1 1 0 Final product (-21) in bold

 4

4. (18 points) IEEE floating-point format
For each part of this problem, show all work for full credit.
a. (9 points) Convert the decimal value 7.75 into single-precision floating-point format.

Solution: We first need to convert this value to binary and then normalize it:

 7.75 = 111.112 = 1.1111 × 22

We can directly determine each of the fields in our single-precision floating-point value:

 Sign = 0 (positive value)
 Exponent = [actual exponent] + bias = 2 + 127 = 129 = 100000012
 Fraction = 11112 = 111 1000 0000 0000 0000 00002 (fraction is 23 bits)

Therefore, as a single-precision floating-point value:

 7.75 = 0100 0000 1111 1000 0000 0000 0000 00002 = 0x40F80000

b. (9 points) Convert the single-precision floating-point value 0xC1280000 into decimal.

Solution: We break the value given into the three fields of a single-precision floating-point
value: sign (1 bit), biased exponent (8 bits), and fraction (23 bits):

0xC1280000 = 1100 0001 0010 1000 0000 0000 0000 00002

Sign = 1 (negative value)
Biased exponent = 100000102 = 130
 Actual exponent = [Biased exponent] – bias = 130 – 127 = 3

Fraction = 010 1000 0000 0000 0000 00002 = 01012

We can then write the magnitude as a normalized binary number, shift it into a binary form that
is not normalized, and convert to decimal:

 1.01012 × 23 = 1010.12 = 10.5

Therefore, the single-precision floating-point value 0xC1280000 represents the decimal value
-10.5.

 5

5. (18 points) Pipelining
Consider the following code sequence. Assume both branches are not taken—all instructions in
the loop are executed:

loop: add $s3, $s0, $s2

lbu $t0, 0($s3)
 beq $t0, $zero, end

 addi $t1, $zero, 90
slt $t2, $t1, $t0
bne $t2, $zero, end

 sb $t1, 0($s3)
 addi $s2, $s2, 1

sw $s2, 0($s1)
j loop

end: ...

For all parts of this problem, show all work for full credit.

a. (10 points) If we assume we have a pipelined datapath without forwarding, how long will

one loop iteration take?

Solution: Without forwarding, we have to figure out where the dependences are and how many
no-ops are necessary. Remember that dependent instructions must have at least two cycles
between them; given this rule of thumb, we can see that the loop body should be rewritten with
no-ops as follows:

loop: add $s3, $s0, $s2
 nop
 nop

lbu $t0, 0($s3)
 nop
 nop
 beq $t0, $zero, end

 addi $t1, $zero, 90
nop
nop
slt $t2, $t1, $t0
nop
nop
bne $t2, $zero, end

 sb $t1, 0($s3)
 addi $s2, $s2, 1

nop
nop
sw $s2, 0($s1)
j loop

 6

5a (continued) The revised loop body now has 20 instructions—the original 10 plus 10 no-ops.
To determine the number of cycles, you could draw a pipeline diagram, or remember that a
program with N instructions running on an M-stage pipeline takes M + (N-1) cycles. In this case,
M = 5 and N = 20, giving a total of 5 + (20-1) = 24 cycles.

b. (8 points) If we now assume a pipelined datapath with forwarding, how many cycles will the

code take?

Solution: Recall that forwarding removes most data hazards; the only one that cannot be
completely removed occurs when a load instruction produces a result used in the very next
instruction. That situation occurs once in this program and requires one no-op:

loop: add $s3, $s0, $s2

lbu $t0, 0($s3)
nop

 beq $t0, $zero, end
 addi $t1, $zero, 90

slt $t2, $t1, $t0
bne $t2, $zero, end

 sb $t1, 0($s3)
 addi $s2, $s2, 1

sw $s2, 0($s1)
j loop

Using the same logic as above, this 11-instruction sequence takes 5 + (11-1) = 15 cycles

 7

6. (16 points) Dynamic branch prediction
a. (10 points) Your processor executes a program containing the high-level code snippet below:
 for (i = 0; i < 2; i++) {
 for (j = 0; j < 2; j++)

{ <body of loop> }
 }

When compiled, this code contains two branches, as shown below. The BNE controls the end of
the inner loop (with index variable j). The BEQ controls the end of the outer loop (with index
variable i). You are given the addresses of each branch in both decimal and hexadecimal.

Address
Decimal Hex

4 0x04 loop1 …
 …

16 0x10 loop2 …
 …

28 0x1C BNE R4, R0, loop2
 …

56 0x38 BEQ R7, R8, loop1

Your processor contains a 2-bit branch history table with 8 entries. All entries are initially set to
11. Complete the table shown below, which tracks the predictions made by this predictor for the
code above. Remember that “T” stands for “taken” and “NT” for “not taken”.

Solution: Note that, to determine the BHT entry number in the 8-entry table, you must use the 3
lowest-order address bits that actually change—the lowest two bits of every instruction address
are always 0. Therefore, the BNE at address 28 = 0001 11002 accesses entry 7, and the BEQ at
address 56 = 0011 10002 accesses entry 6.

Students were responsible for completing the table entries with underlined, bold-faced font.

Outer
Loop

Iteration

Inner
Loop

Iteration
Branch

BHT
Entry

BHT
Entry
Value

Pred. Actual
Outcome

New
BHT
Entry
Value

1 1 BNE 7 11 T T 11

1 2 BNE 7 11 T NT 10

1 - BEQ 6 11 T T 11

2 1 BNE 7 10 T T 11

2 2 BNE 7 11 T NT 10

2 - BEQ 6 11 T NT 10

 8

b. (6 points) Assume you have a 4 entry (2,2) correlating predictor. For each part of this
question, you are given a single line of the predictor, which is used to predict the given branch,
as well as the current global history. For the given branch outcome, determine the prediction,
new predictor state, and new global history.

i. Predictor entries: 00 10 01 11

 Current global history: 0 1

 Branch outcome: Not taken

Solution: Given a global history of 01, the predictor will use the second entry in the row (the
underlined entry above). That entry generates a prediction of taken, since its current state is 10.

Because the actual branch outcome is not taken, the new predictor state is 00.

The global history is based on the actual branch outcomes, with a 0 shifted in for a not taken
branch. Therefore, the new global history is 10.

ii. Predictor entries: 10 01 11 00

 Current global history: 0 0

Branch outcome: Taken

Solution: Given a global history of 00, the predictor will use the first entry in the row (the
underlined entry above). That entry generates a prediction of taken, since its current state is 10.

Because the actual branch outcome is taken, the new predictor state is 11.

The global history is based on the actual branch outcomes, with a 1 shifted in for a taken branch.
Therefore, the new global history is 01.

	Midterm Exam Solution

