
16.482 / 16.561: Computer Architecture and Design 
Fall 2013 

Final Exam Solution 
 
1. (16 points) Dynamic scheduling and speculation 
a. (4 points) Explain why instruction results in a speculative, dynamically scheduled processor 
are stored in the reorder buffer rather than directly being written to the register file or memory. 
How does this setup impact register renaming (in other words, how is register renaming handled 
differently in a dynamically scheduled processor with speculation than it is without speculation)? 
 
Solution: In order to allow the ability to recover from branch mispredictions, instructions 
cannot update the permanent state of the processor until it is known that they are correct. 
However, for performance reasons, instructions should execute and complete out of order where 
possible. Instruction results therefore must be stored between the write back (WB) and commit 
(C) stages; the ROB is used to hold these results during that time. 
 
Because results may be read from the ROB between WB and C, registers are renamed based on 
their ROB entry, not the reservation station to which the instruction is issued. 
 
b. (12 points) You are given the following piece of code to run on a dynamically scheduled 
machine that allows speculation: 
 
 Loop: L.D   F2, 0(R1) 

MUL.D  F4, F4, F2 
DADDUI R1, R1, #8 
BNE   R1, R2, Loop 
S.D   F4, 8(R1) 

 
Assume the following latencies: 

• L.D and S.D have 2 cycle latencies (1 cycle execution, 1 cycle in memory) 
• MUL.D has a 5 cycle latency 
• All other operations have 1 cycle latencies 

 
Also, assume: 

• The loop executes three times.  
• The branch at the end of the loop is always predicted taken.  

o If there is a misprediction, you should accurately show how it would be handled. 
Unknown instructions should be shown as “?” in the Inst. column of your diagram 

• Integer and floating point operations are handled in separate functional units. 
• You only have one common data bus available—if two instructions need to use the 

common data bus, the earliest instruction in terms of program order has priority.  
• You only have the ability to commit one instruction per cycle. 

 
How many cycles will this sequence take, from the time the first instruction fetches to the time 
the last instruction commits? Complete in the pipeline diagram on the following page to support 
your answer. Use the space below and the back of this page for any additional work.  



QUESTION 1b SOLUTION 

Inst. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
L.D  
F2,0(R1) IF IS EX M WB C                   

MUL.D 
F4,F4,F2  IF IS S E1 E2 E3 E4 E5 WB C              

DADDUI 
R1,R1,#8   IF IS EX WB -- -- -- -- -- C             

BNE 
R1,R2,Loop    IF IS EX -- -- -- -- -- -- C            

L.D  
F2,0(R1)     IF IS EX M WB -- -- -- -- C           

MUL.D 
F4,F4,F2      IF IS S S E1 E2 E3 E4 E5 WB C         

DADDUI 
R1,R1,#8       IF IS EX S WB -- -- -- -- -- C        

BNE 
R1,R2,Loop        IF IS EX -- -- -- -- -- -- -- C       

L.D  
F2,0(R1)         IF IS EX M WB -- -- -- -- -- C      

MUL.D 
F4,F4,F2          IF IS S S S E1 E2 E3 E4 E5 WB C    

DADDUI 
R1,R1,#8           IF IS EX WB -- -- -- -- -- -- -- C   

BNE 
R1,R2,Loop            IF IS EX -- -- -- -- -- -- -- -- C  

L.D  
F2,0(R1)             IF IS           

MUL.D 
F4,F4,F2              IF           

S.D 
F4,8(R1)               IF IS EX -- -- -- -- -- -- C 

 
Note: Stalls due to data dependences shown in red, as are squashed instructions. Stalls due to CDB conflicts shown in blue. Cycles 
spent waiting between WB and C are indicated by "--". 



2. (16 points) Multithreading 
a. (4 points) List one benefit of fine-grained multithreading over coarse-grained multithreading 
and one benefit of coarse-grained multithreading over fine-grained multithreading. 
 
Solution:  
Fine-grained benefits: maximum fairness among all threads 
Coarse-grained benefits: best single thread performance for thread that can run without long-

latency stalls. 
 
 
b. (12 points) Given the 3 threads below, determine how long they take to execute using 
simultaneous multithreading on a processor with the following characteristics: 
 

• 4 functional units: 2 ALUs, 1 memory port (load/store), 1 branch 
o The ALUs can handle MUL.D operations 
o The branch unit can handle jumps 

• In-order execution 
• The following instruction latencies: 

o L.D/S.D: 3 cycles (1 EX, 2 MEM) 
o MUL.D: 4 cycles 
o ADD.D/SUB.D: 2 cycles 
o All other operations: 1 cycle 

• Thread 1 is the preferred thread, followed by Thread 2 and Thread 3. 
 
Assume the BEQ in Thread 3 is not taken. 
 
Your solution should use the table on the next page, which contains columns to show each cycle, 
the functional units being used during that cycle, and space to indicate stall cycles. Note that you 
only need to label a cycle as a stall if all active threads are stalled. Clearly indicate which 
thread contains each instruction when completing the table. 
 
NOTE: The last page of the exam contains an extra copy of the latencies and threads. 
 
Thread 1: 
L.D  F0, 0(R1) 
MUL.D F4, F0, F2 
ADD.D F6, F4, F10 
S.D  F6, 16(R1) 
SUB.D F10, F6, F2 
S.D  F10, 32(R1) 
DADDUI R1, R1, #-48 
BNEZ  R1, loop 

Thread 2: 
L.D  F2, 0(R1)  
ADD.D F4, F4, F0 
SUB.D F6, F6, F0 
MUL.D F8, F2, F6 
MUL.D F10, F2, F4 
ADD.D F0, F10, F8 
DSUB  R1, R1, R2 
BNEZ  R1, loop  

Thread 3: 
LW  R1, 0(R2) 
BEQ  R1, R3, t1 
ADD.D F0, F2, F4 
MUL.D F6, F2, F4 
S.D  F0, 0(R1) 
S.D  F6, 8(R1) 
JR  R31 



 

QUESTION 2b SOLUTION 
 

Cycle ALU1 ALU2 Mem1 Branch 
1   T1: L.D  
2 T2: ADD.D T2: SUB.D T2: L.D  
3   T3: LW  
4 T1: MUL.D    
5 T2: MUL.D T2: MUL.D   
6 T3: ADD.D T3: MUL.D  T3: BEQ 
7     
8 T1: ADD.D  T3: S.D  
9 T2: ADD.D T2: DSUB   
10 T1: SUB.D  T1: S.D T2: BNEZ 
11   T3: S.D T3: JR 
12 T1: DADDUI  T1: S.D  
13    T1: BNEZ 



 

3. (16 points) Cache operation 
You are given a system which has a 16-byte, write-back cache with 4-byte blocks. The cache is 
direct-mapped. The system uses 8-bit addresses, and the cache is initially empty. 
 
a. (12 points) Assume the initial memory state shown below for the first 32 bytes:  
 

Address   Address  Address   Address  
0 27  8 19 16 22  24 13 
1 3  9 78 17 5  25 24 
2 20  10 9 18 15  26 21 
3 11  11 12 19 13  27 7 
4 5  12 1 20 49  28 18 
5 12  13 0 21 77  29 8 
6 14  14 63 22 15  30 55 
7 2  15 98 23 44  31 99 

 
For each access in the sequence listed below, fill in the cache state, indicate what register (if any) 
changes, and indicate if any memory blocks are written back and if so, what addresses and values 
are written. The cache state should carry over from one access to the next.  
 

Access Modified  
register 

Cache state Modified  
mem. block V D Tag Data 

lb $t0,6($zero)  $t0 = 14 

       

None 
1 0 0000 5 12 14 2 
       
       

sb $t0,4($zero)  None 

       

None 
1 1 0000 14 12 14 2 
       
       

lb $t1,23($zero)  $t1 = 44 

       

Bytes 4-7 = 
[14 12 14 2] 

1 0 0001 49 77 15 4 
       
       

sb $t1,14($zero)  None 

       

 
1 0 0001 49 77 15 4 
       

1 1 0000 1 0 44 98 



 

3 (continued) 
b. (4 points) Assume this cache is the Level 1 cache in a hierarchy with the following 

characteristics: 
• Level 1 cache: 4 ns access time, 92% hit rate 
• Level 2 cache: 12 ns access time, 96% hit rate 
• Memory: 100 ns access time, 99% hit rate 
• Disk: 1000 ns access time 

 
Assume that the processor cycle time is 2 ns. How many cycles will an average memory access 
take? Show all work for full credit. 
 
 
Solution: Simply plug into the AMAT equation. Note that this solution gives you the time in 
nanoseconds and then converts to cycles; you could recognize that the L1 cache takes 2 cycles, 
L2 takes 6, memory takes 50, and disk takes 500 and just use those numbers: 
 
 AMAT = (Hit time) + (Miss rate) * (Miss penalty) 
  = 4 + (.08) * AMATL2 
  = 4 + (.08) * (12 + (.04) * AMATMemory) 
  = 4 + (.08) * (12 + (.04) * (100 + (.01) * AMATdisk)) 
  = 4 + (.08) * (12 + (.04) * (100 + (.01) * (1000))) 
  = 4 + (.08) * (12 + (.04) * (100 + 10)) 
  = 4 + (.08) * (12 + 4.4) 
  = 4 + 1.312 = 5.312 ns 
 
5.312 ns / 2 ns per cycle  2.656 cycles  must round up to 3 cycles 

 



 

4. (15 points) Virtual memory 
Answer the following questions about a process using the page table below: 
 

Virtual 
page #  Valid bit  Reference 

bit  Dirty bit  Frame #  
0  0 0 0  -- 
1  1  1  1  2 
2  1  0  1  3  
3  0  0  0  --  
4 1 0 0 1 
5 0 0 0 -- 

 
a. (3 points) Which pages are candidates to be evicted on a page fault? Under what conditions 
would a page fault cause one of these pages to be evicted? 
 
Solution: Any valid page with a reference bit equal to 0 is a candidate for eviction—in this case, 
pages 2 and 4. Evictions only occur, however, if there are no free frames in memory. If a page 
fault occurs when a free frame is available, the free frame is filled without evicting anything. 
 
 
b. (6 points) Assuming 2 KB pages, what physical addresses would the virtual addresses below 

map to? Note that some virtual addresses may not have a valid translation, in which case you 
should note that address causes a page fault. 

 
Note: 2 KB = 211 byte pages have an 11-bit page offset and a (16-11) = 5-bit page number. 
 

• 0x2010 
 
Solution:  0x2010 = 0010 0000 0001 00002  page # = 001002 = 4 
 Frame # = 1 = 00001  physical address = 0000 1000 0001 00002 = 0x0810 

 
 

• 0x1FFE 
 

Solution: 0x1FFE = 0001 1111 1111 11102  page # = 000112 = 3  page fault 
 
 

• 0x0A1B 
 
Solution: 0x0A1B = 0000 1010 0001 10112  page # = 000012 = 1 
  Frame # = 2 = 000102  physical address = 0001 0010 0001 10112 = 0x121B 



 

4 (continued) 
c. (6 points) Fill in the table at the bottom of the page to show the final state of the page table 
after the following sequence of accesses. Assume main memory has 4 frames, numbered 0-3, and 
frame 0 is initially free. The initial state of the page table is repeated below for your reference. 
 
ACCESS SEQUENCE 

• Read page 3  Page fault; page 3 allocated to frame 0; Valid = Ref = 1; Dirty = 0 
• Write page 4  Dirty = Ref = 1; all other bits unchanged 
• Write page 5  Page fault; page 2 evicted (only valid page with Ref = 0) 

   Page 5 allocated to frame 3; Valid = Ref = Dirty = 1 
• Read page 4  No changes—page 4 is valid and reference bit already = 1 

 
INITIAL PAGE TABLE STATE: 
 

Virtual 
page #  Valid bit  Reference 

bit  Dirty bit  Frame #  
0  0 0 0  -- 
1  1  1  1  2 
2  1  0  1  3  
3  0  0  0  --  
4 1 0 0 1 
5 0 0 0 -- 

 
 
FINAL PAGE TABLE STATE:  Changes are in bold 
 

Virtual 
page #  Valid bit  Reference 

bit  Dirty bit  Frame #  
0  0 0 0 -- 

1  1 1 1 2 

2  0 0 0 -- 

3  1 1 0 0 

4 1 1 1 1 

5 1 1 1 3 



 

5. (13 points) Cache optimizations 
Use the following page to answer only 1 of the following 2 questions—part (a) or part (b). 
Clearly indicate which question you have chosen to answer at the top of the page.  

 
a. (Multi-banked/non-blocking caches) Assume we have a system containing 16 blocks of 
memory, numbered 0-15. This system has an 8-line, direct-mapped cache that is initially empty. 
Assume we have a program that accesses 10 of these blocks in the following order, with one 
access initiated per cycle unless a stall occurs: 
 

0, 1, 4, 14, 7, 5, 9, 8, 15, 6 
 
Note that all of these accesses are misses; each miss takes 20 cycles to handle. 
 

i. (3 points) Calculate the total time for these 10 accesses if the cache is not split into banks and 
is therefore a blocking cache (i.e., only one miss can be handled at a time).  
 

Solution: Since each access causes the cache to block, they cannot be overlapped. The total time 
is therefore: (20 cycles per access) * (10 accesses) = 200 cycles. 
 

 
ii. (5 points) Calculate the total time for these 10 accesses if the cache is divided evenly into 

four banks. Assume the blocks are not interleaved sequentially, so blocks are mapped to 
cache lines using normal direct mapping. In other words, B0 maps to cache line 0, B1 to 
cache line 1, and so on. 
 

Solution: Remember, accesses to different banks can be overlapped and will start in consecutive 
cycles (for example, if an access to one bank starts in cycle i, the next access can start in cycle 
i+1). Since we are not using sequential interleaving, the blocks are mapped to cache lines—and 
therefore to banks—as shown in the table below: 
 

Line # Blocks mapped to this line    
0 0, 8   Bank 0 1 1, 9   
     

2 2, 10   Bank 1 3 3, 11   
     

4 4, 12   Bank 2 5 5, 13   
     

6 6, 14   Bank 3 7 7, 15   
 
Now, we can determine the total access time by looking at each access and determining which 
ones can be overlapped. Note that up to 4 accesses can be overlapped—1 per bank. 



 

5.a.ii (continued) 
The table below shows each access, the bank it accesses, and the start and end time of those 
accesses. In total, the sequence takes 105 cycles given this cache organization. 

Block # Bank Start cycle End cycle 
0 0 1 20 
1 0 21 40 
4 2 22 41 

14 3 23 42 
7 3 43 62 
5 2 44 63 
9 0 45 64 
8 0 65 84 

15 3 66 85 
6 3 86 105 

 
iii. (5 points) Calculate the total time for these 10 accesses if the cache is divided evenly into 

four banks and the blocks are interleaved sequentially across those four banks. 
 

Solution: With sequential interleaving, we have the following mapping: 

Line # Blocks mapped to this line    
0 0, 8   Bank 0 1 4, 12   
     

2 1, 9   Bank 1 3 5, 13   
     

4 2, 10   Bank 2 5 6, 14   
     

6 3, 11   Bank 3 7 7, 15   
 
As shown in the table below, the sequence will take 66 cycles given this cache organization. 

Block # Bank Start cycle End cycle 
0 0 1 20 
1 1 2 21 
4 0 21 40 

14 2 22 41 
7 3 23 42 
5 1 24 43 
9 1 44 63 
8 0 45 64 

15 3 46 65 
6 2 47 66 



 

b. (Early restart/critical word first) Say we have a program running on a 32-bit processor in 
which a certain cache block is evicted from the cache before every access, making every access 
to this block a cache miss. The block contains 512 bytes. Assume every word (i.e., every 4 bytes 
of data) in the block is accessed exactly once. 
 
If main memory is capable of supplying a word to the cache every 100 µs (1 µs = 10-6 s), 
calculate the total time required to access all words in the cache block using each of the 
following policies to fill the cache block on a miss: 

• Sequential cache block fill (i.e., start with word 0 and fill all words in block) 
• Early restart (without critical word first) 
• Critical word first with early restart 

 
Solution: First, note that the processor word size is 32 bits = 4 bytes. Since we’re given the 
amount of time required to supply a word to the cache, it’s important to know that each cache 
block contains 512 / 4 = 128 words. Since we’re told that every word is accessed exactly once, 
that means this sequence contains 128 accesses. 
 
Considering each of the fill policies: 

• Sequential cache block fill: Every access requires the entire block to be filled before the 
processor starts; the total time for the sequence is therefore: 

 
(100 µs/word) * (128 words/access) * (128 accesses) = 1638400 µs = 1.6384 s 

 
• Early restart (without critical word first): This organization still uses sequential block 

fill; however, the processor can be restarted as soon as the desired word has been 
fetched. Accessing the first word takes just 100 µs; accessing the last word takes 12800 
µs. The total time for the sequence is therefore: 

 
100 µs + 200 µs + … + 12700 µs + 12800 µs = 825600 µs = 825.6 ms 

  
(Note: I found a shortcut to solve this sum; namely, that the combined time required to 
fetch word i and word (129-i) = 12900 µs. In other words, fetching words 1 and 128 (the 
first & last words), 2 and 127, 3 and 126, and so on. If you recognize that you have 64 
such pairs, you can solve the problem by multiplying (12900 µs / pair) * (64 pairs).) 

 
• Critical word first with early restart: In this case, every desired word is fetched 

immediately, and the processor is restarted when the word is retrieved. The total time for 
the sequence is therefore: 

 
(100 µs / word) * (1 word/access) * (128 accesses) = 12800 µs = 12.8 ms 

 



 

6. (10 points) RAID 
You are working with a 5-disk RAID array that contains a total of 15 sectors; the exact sector 
configuration depends on the RAID level used. In all cases, twelve of the fifteen sectors (S0-
S11) will hold data, while the remaining three sectors (P0-P2) hold parity information. Large 
reads and writes (reads/writes that access an entire stripe in the array) take 300 ms, small reads 
(reads involving only a single disk) take 150 ms, and small writes (writes involving 1 data disk + 
1 parity disk) take 200 ms.  
 
Given the following sequence of sector reads and writes, determine the time required if the array 
is configured with RAID 3, RAID 4, and RAID 5. Assume the following: 

• Requests are queued in such a manner that two consecutive operations may proceed 
simultaneously if they do not share any disk within the array. 

• If two disks, Dx and Dy, are in use, and the access to Dx finishes before the access to Dy, a 
new operation may start immediately assuming it does not involve Dy. 

• Multiple accesses to the same stripe may overlap if they don't use the same disk. 
 

1. read S0 
2. write S5 
3. write S8 
4. read S9 
5. read S3 
6. write S7 
7. read S11 
8. write S1 

 
In each case, show the organization of the array to support your answer. The next page contains 
additional space to solve this problem. 
 
Solution: 

• In RAID 3, only large reads and writes are allowed. Since each operation involves every 
disk, no operations may be overlapped, and the total time for 8 large reads and writes is 
8 x 300 ms = 2400 ms = 2.4 s. 

• In RAID 4, you may perform small reads, but only large writes. Therefore, any two 
consecutive reads that do not use the same disk can proceed in parallel. Nothing may be 
overlapped with a write. We assume the following organization: 

 
Disk 1  Disk 2  Disk 3  Disk 4  Disk 5 

S0  S1  S2  S3  P0 
         

S4  S5  S6  S7  P1 
         

S8  S9  S10  S11  P2 
 

 



 

  

Operation Start 
time 

End 
time Notes 

read S0 1 150 Small read followed by write—no overlap 
write S5 151 450  
write S8 451 750  
read S9 751 900 Sectors are on different disks, so small reads 

can be overlapped read S3 751 900 
write S7 901 1200  
read S11 1201 1350 Small read followed by write—no overlap 
write S1 1351 1650  

 
In RAID 4, this sequence takes 1650 ms = 1.65 s. 
 

• In RAID 5, both small reads and writes are allowed; we can therefore overlap any two 
consecutive operations that do not share the same disk. Remember RAID 5 also involves 
interleaved parity to make small writes possible, so the organization changes as follows: 
 

Disk 1  Disk 2  Disk 3  Disk 4  Disk 5 
S0  S1  S2  S3  P0 

         
S4  S5  S6  P1  S7 

         
S8  S9  P2  S10  S11 

 
Note also that the problem states we can start a new transaction any time an existing 
transaction ends, provided the new transaction does not use the same disk as a currently 
executing transaction. Note that we must be careful. Although RAID 5 does enable small 
writes, these operations use two disks—the disk being written and the parity disk for that 
stripe. The solution to this part of the problem therefore becomes more complex and can 
best be described by tracking start and end times for each operation: 
 

Operation Start 
time 

End 
time Notes 

read S0 1 150 Different disks—overlap allowed. 
write S5 1 200 
write S8 151 350 Can start when read to S0 finishes. 
read S9 201 350 Can start when write to S5 finishes. Allow multiple 

accesses in same stripe if different disks involved. 
read S3 351 500 Cannot overlap with next write—both use Disk 4. 
write S7 501 700 Cannot overlap with next read—both use Disk 5. 
read S11 701 850 Cannot overlap with next write—both use Disk 5. 
write S1 851 1050  

 
In RAID 5, this sequence takes 1050 ms = 1.05 s. 



 

7. (14 points) Multiprocessors 
Note: To complete this problem, you must solve part (a) + either part (b) or (c). 
 
a. (4 points) Say you have a dual processor system running two separate programs that share 

data but use different variable names. The following pieces of code are executed in the order 
shown, with the side effects listed: 
• P0: x = 12;  (P0 writes x, invalidates copy of that block in P1’s cache) 
• P1: a = b;  (P1 experiences cache miss while reading b) 
 

Assume that the cache miss for P1 is a result of the invalidation from P0. Under what conditions 
is the cache miss for P1 a true sharing miss? Under what conditions is that miss a false sharing 
miss? 
 
Solution: We know from the problem that x and b share a cache block—that condition must be 
true for the invalidation by P0 to cause a cache miss in P1 while reading b. If x and b share the 
exact same address—they both use the same word in the cache block—then the miss is a true 
sharing miss. If they have different addresses, the miss is a false sharing miss. 
 
 
 
 
b. (10 points) Solve either part (b) or part (c)—not both. 
Say we have a four-processor system that uses a write-invalidate, directory coherence protocol. 
The system contains a total of 8 memory blocks, as shown in the initial directory state below: 
 

Block # P0 P1 P2 P3 Dirty 
0 0 0 0 0 0 
1 1 0 1 1 0 
2 1 0 0 0 1 
3 0 1 0 1 0 
4 0 0 1 1 0 
5 0 1 0 0 1 
6 0 1 0 0 0 
7 0 0 0 0 0 

 
For all sequences of transactions shown on the next page, list all messages sent as well as the 
final directory state for the block(s) in question. You should assume that each sequence of 
accesses is independent—your answer to part 2 does not depend on part 1—but accesses within a 
sequence are dependent on one another—your answer for part 1, access (ii) does depend on what 
happens in part 1, access (i). 

 
Note: Your second handout contains an extra copy of the directory state above.

 
Solution: See the table on the next page. Note that the “final directory state column” shows only 
the directory entry or entries for blocks that are referenced. 
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QUESTION 7b SOLUTION 

Transaction(s) Messages sent 
Final directory state 

(shown as 
[P0,P1,P2,P3,Dirty]) 

1. (i) P1: read block 2 
    (ii) P2: read block 2 
    (iii) P3: read block 2 
 
 
 
 
 

1. ReadMiss(P1,2) to directory 
Fetch(2) from directory to P0 
DataWriteBack(2,mem[2]) from P0 to directory 
DataValueReply(mem[2]) from directory to P1 
 

(ii) ReadMiss(P2,2) to directory 
     DataValueReply(mem[2]) from directory to P2 
 
(iii) ReadMiss(P3,2) to directory 
     DataValueReply(mem[2]) from directory to P3 

Block 2: 
[1,1,1,1,0] 

2. (i) P2: write block 5 
    (ii) P2: write block 6 
    (iii) P2: write block 7 
 
 
 
 
 

(i) WriteMiss(P2,5) to directory 
    FetchAndInvalidate(5) from directory to P1 
    DataWriteBack(5,mem[5]) from P1 to directory 
    DataValueReply(mem[5]) from directory to P2 
 
(ii) WriteMiss(P2,6) to directory 
     Invalidate(6) from directory to P1 
     DataValueReply(mem[6]) from directory to P2 
 
(iii) WriteMiss(P2,7) to directory 
     DataValueReply(mem[7]) from directory to P2 

Block 5: 
[0,0,1,0,1] 
Block 6: 
[0,0,1,0,1] 
Block 7: 
[0,0,1,0,1] 

3. (i) P3: write block 2 
    (ii) P0: write block 2 
    (iii) P3: read block 2 
 
 
 
 
 
 

(i) WriteMiss(P3,2) to directory 
    FetchAndInvalidate(2) from directory to P0 
    DataWriteBack(2,mem[2]) from P0 to directory 
    DataValueReply(mem[2]) from directory to P3 
 
(ii) WriteMiss(P0,2) to directory 
    FetchAndInvalidate(2) from directory to P3 
    DataWriteBack(2,mem[2]) from P3 to directory 
    DataValueReply(mem[2]) from directory to P0 
 
(i) ReadMiss(P3,2) to directory 
    Fetch(2) from directory to P0 
    DataWriteBack(2,mem[2]) from P0 to directory 
    DataValueReply(mem[2]) from directory to P3 

Block 2: 
[1,0,0,1,0] 
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c. (10 points) Solve either part (b) or part (c)—not both. 
You are given a four-processor system that uses a write-invalidate, snooping coherence protocol. 
Each direct-mapped, write-back cache has four lines, each of which holds eight bytes; in the 
diagram below, only the least-significant byte of each word is shown. The cache states are I 
(invalid), S (shared), and M (modified/exclusive). 
 
The caches and memory have the following initial state; please note that all addresses and tags 
are shown in hexadecimal: 
 

P0      P1     
 State Tag Data   State Tag Data 
B0 I 0x100 02 80  B0 I 0x100 02 80 
B1 S 0x108 00 88  B1 M 0x128 AB CD 
B2 M 0x110 30 09  B2 I 0x110 20 08 
B3 I 0x118 00 10  B3 S 0x118 14 92 
           
           
P2      P3     
 State Tag Data   State Tag Data 
B0 S 0x120 13 31  B0 M 0x100 13 31 
B1 S 0x108 00 88  B1 S 0x108 00 88 
B2 I 0x130 14 12  B2 S 0x130 14 12 
B3 I 0x138 01 38  B3 S 0x118 14 92 

 
Memory   
Address Data 

0x100 02 80 
0x108 00 88 
0x110 20 08 
0x118 14 92 
0x120 13 31 
0x128 FF FE 
0x130 14 12 
0x138 AB BA 

 
For each of the transactions listed on the next page, use the table to list all cache blocks modified 
and their final state, as well as all memory blocks modified and their final state. Assume each set 
of transactions starts with the same initial state—in other words, your answer to part (b) does not 
depend on your answer to part (a). However, you should track the state transitions of each block 
throughout the problem. 
 
NOTE: Your second handout contains an extra copy of the tables above.  
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QUESTION 7c SOLUTION 
Transaction(s) Cache blocks modified Memory blocks modified 

1. (i) P0: write 0x114  99 
    (ii) P2: read 0x110 
    (iii) P3: write 0x110  99 
 
 
 
 

(i) P0.B2: (M, 0x110, 30 99) 
(ii) P0.B2: (S, 0x110, 30 99) 
     P2.B2: (S, 0x110, 30 99) 
(iii) P0.B2: (I, 0x110, 30 99) 
      P2.B2: (I, 0x110, 30 99)  
     P3.B2: (M, 0x110, 99 99) 
 

(ii) M[0x110]: 30 99 

2. (i) P2: write 0x138  12 
    (ii) P2: read 0x118 
    (iii) P0: read 0x138 

(i) P2.B3: (M, 0x138, 12 BA) 
(ii) P2.B3: (S, 0x118, 14 92) 
(iii) P0.B3: (S, 0x138, 12 BA) 
 

(ii) M[0x138]: 12 BA 

3. (i) P3: write 0x10C  FF 
    (ii) P3: write 0x134  41 
    (iii) P3: write 0x104  AB 
 
 
 

(i) P0.B1: (I, 0x108, 00 88) 
    P2.B1: (I, 0x108, 00 88) 
    P3.B1: (M, 0x108, 00 FF) 
(ii) P3.B2: (M, 0x130, 14 41) 
(iii) P3.B0: (M, 0x100, 13 AB) 
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