
The following pages contain a list of MIPS instructions for use during the exam. You do not need to
submit these pages when you finish your exam. Note that:

• Constants are in decimal unless explicitly written as hexadecimal using leading 0x (i.e., 0x1234)
• The notation “mem[<addr>]” means the contents of memory at the address in brackets.

o <addr> is typically specified as the sum of a base register and constant offset. For
example, the instruction lw $t0, 0($s0) accesses address 0+$s0.

Category Instruction Example Meaning

Data
transfer

Load byte (signed) lb $t0, 0($t1) $t0 = sign-extended byte
at mem[0+$t1]

Load halfword
(signed)

lh $t3, 6($s0) $t3 = sign-extended
halfword at mem[6+$s0]

Load word lw $s3, 12($t4)
lwu $s3, 12($t4)

$s3 = word at mem[12+$t4]

Load byte (unsigned) lbu $t0, 0($t1) $t0 = zero-extended byte
at mem[0+$t1]

Load halfword
(unsigned)

lhu $t3, 6($s0) $t3 = zero-extended
halfword at mem[6+$s0]

Store byte sb $t0, 3($s4) Byte at mem[3+$s4] =
lowest byte of $t0

Store halfword sh $t1, 10($t0) Halfword at mem[10+$t0] =
lowest halfword of $t1

Store word sw $t2, 4($s0) Word at mem[4+$s0] =
full contents of $t2

Move from Hi/Lo
(special regs used for
multiplication/ division)

mfhi $t0
mflo $t1

$t0 = Hi
$t1 = Lo

Arithmetic

Add add $t0, $t1, $t2
addu $t0, $t1, $t2

$t0 = $t1 + $t2
(addu ignores overflow)

Add immediate addi $t0, $t1, 16
addiu $t0, $t1, 16

$t0 = $t1 + 16
(addiu ignores overflow)

Subtract sub $t3, $t4, $t5
subu $t3, $t4, $t5

$t3 = $t4 - $t5
(subu ignores overflow)

Multiply mult $s0, $s1
multu $s0, $s1

mul $s2, $s0, $s1

(Hi,Lo) = $s0 * $s1
Hi = upper 32 bits of
result, Lo = lower 32 bits
of result

$s2 = lowest 32 bits of
$s0 * $s1

Logical

Logical AND and $t0, $t1, $t2 $t0 = $t1 AND $t2
AND immediate andi $t0, $t1,

 0xFFFF
$t0 = $t1 AND 0x0000FFFF

Logical inclusive OR or $t3, $t4, $t5 $t3 = $t4 OR $t5
OR immediate ori $t3, $t4,

 0x1001
$t3 = $t4 OR 0x00001001

Logical exclusive OR xor $t6, $t7, $t8 $t6 = $t7 XOR $t8
XOR immediate xori $t6, $t7,

0xABCD
$t6 = $t7 XOR 0x0000ABCD

Logical NOR nor $s0, $s1, $s2 $s0 = $s1 NOR $s2

Category Instruction Example Meaning

Shift

Shift left sll $t0, $t1, 5 $t0 = $t1 << 5
Logical shift right srl $s5, $s6, 4 $s5 = $s6 >> 4

(upper 4 bits = 0)
Arithmetic shift right
(treat value as signed;
maintain sign)

srl $s5, $s6, 4 $s5 = $s6 >> 4
(upper 4 bits = MSB of
original value)

Misc.
computation

Set less than slt $t5, $t0, $t1 $t5 = 1 if $t0 < $t1
 (signed comparison)
$t5 = 0 otherwise

Set less than
unsigned

sltu $t5, $t0, $t1 $t5 = 1 if $t0 < $t1
 (unsigned comparison)
$t5 = 0 otherwise

Set less than
immediate

slti $s0, $t0, 14 $s0 = 1 if $t0 < 14
 (signed comparison)
$s0 = 0 otherwise

Set less than
immediate unsigned

sltiu $s0, $t0, 14 $s0 = 1 if $t0 < 14
 (unsigned comparison)
$s0 = 0 otherwise

Load upper
immediate

lui $t4, 0x1234 $t4 = 0x12340000

Control flow

Branch on equal beq $t0, $t1, label Jump to "label" if
 $t0 == $t1
Otherwise, go to next
 sequential instruction

Branch on not equal bne $t0, $t1, label Jump to "label" if
 $t0 != $t1
Otherwise, go to next
 sequential instruction

Unconditional jump j label Jump to "label"
Register jump jr $ra Jump to address stored in

 register $ra
Jump and link jal f Store PC+4 (return

 address) on stack, then
 jump to "f"

Floating
point
(Instructions
ending in .s
are single
precision; .d
are double
precision.
Registers
are paired
in double-
precision
ops.)

FP add add.d F0, F2, F4 (F1/F0) = (F3/F2)+(F5/F4)
FP subtract sub.d F6, F8, F0 (F7/F6) = (F9/F8)-(F1/F0)
FP multiply mult.s F0, F1, F2 F0 = F1 * F2
FP divide div.s F4, F5, F6 F4 = F5 / F6
FP load l.d F0, 0(R2) F0 = lower 32 bits of

double-precision value
at mem[0+R2]

F1 = upper 32 bits of
double-precision value
at mem[0+R2]

FP store s.s F5, 10(R1) mem[10+R1] = single-
precision value stored
in F5

